cuda_device_function.h 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16

17 18
// NOTE(): support float16 to half in header file.
#define PADDLE_CUDA_FP16
19 20
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
21
#include "paddle/fluid/platform/float16.h"
22 23 24 25

namespace paddle {
namespace platform {

26 27 28
#ifdef PADDLE_WITH_HIP
#define CREATE_SHFL_MASK(mask, predicate) mask = __ballot((predicate))
#else
29 30 31
#define FULL_WARP_MASK 0xFFFFFFFF
#define CREATE_SHFL_MASK(mask, predicate) \
  mask = __ballot_sync(FULL_WARP_MASK, (predicate))
C
chengduoZH 已提交
32 33
#endif

34
inline static int RoundToPowerOfTwo(int dim) {
35
#ifdef PADDLE_WITH_CUDA
36 37 38 39 40 41 42 43 44 45 46 47 48
  if (dim > 512) {
    return 1024;
  } else if (dim > 256) {
    return 512;
  } else if (dim > 128) {
    return 256;
  } else if (dim > 64) {
    return 128;
  } else if (dim > 32) {
    return 64;
  } else {
    return 32;
  }
49 50 51 52 53 54 55 56 57 58 59
#else  // HIP results in error or nan if > 256
  if (dim > 128) {
    return 256;
  } else if (dim > 64) {
    return 128;
  } else if (dim > 32) {
    return 64;
  } else {
    return 32;
  }
#endif
60 61 62 63 64 65 66 67
}

#define CUDA_LAUNCH_KERNEL_BASE(dim, ...)  \
  case (dim): {                            \
    constexpr auto kPowerOfTwoDim = (dim); \
    __VA_ARGS__;                           \
  } break

68 69 70 71 72 73
#define CUDA_LAUNCH_KERNEL_HELPER(...)          \
  CUDA_LAUNCH_KERNEL_BASE(1024, ##__VA_ARGS__); \
  CUDA_LAUNCH_KERNEL_BASE(512, ##__VA_ARGS__);  \
  CUDA_LAUNCH_KERNEL_BASE(256, ##__VA_ARGS__);  \
  CUDA_LAUNCH_KERNEL_BASE(128, ##__VA_ARGS__);  \
  CUDA_LAUNCH_KERNEL_BASE(64, ##__VA_ARGS__);   \
74 75
  CUDA_LAUNCH_KERNEL_BASE(32, ##__VA_ARGS__);

C
chengduoZH 已提交
76
template <typename T>
C
chengduoZH 已提交
77
__forceinline__ __device__ T CudaShuffleDownSync(unsigned mask, T val,
78 79
                                                 int delta,
                                                 int width = warpSize) {
T
tianshuo78520a 已提交
80
#if defined(PADDLE_WITH_HIP)
C
chengduoZH 已提交
81 82
  return __shfl_down(val, delta, width);
#else
83
  return __shfl_down_sync(mask, val, static_cast<unsigned>(delta), width);
C
chengduoZH 已提交
84
#endif
C
chengduoZH 已提交
85 86
}

87 88 89
template <typename T>
__forceinline__ __device__ T CudaShuffleXorSync(unsigned mask, T val,
                                                int width = warpSize) {
T
tianshuo78520a 已提交
90
#if defined(PADDLE_WITH_HIP)
91 92 93 94 95 96
  return __shfl_xor(val, width);
#else
  return __shfl_xor_sync(mask, val, width);
#endif
}

97
// CUDA 9.0 have native compatible float16 shfl_down
T
tianshuo78520a 已提交
98
#if defined(PADDLE_WITH_HIP)
99 100 101 102
template <>
__forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask,
                                                       float16 val, int delta,
                                                       int width) {
103 104 105 106
#ifdef PADDLE_WITH_HIP
  return float16(__shfl_down(static_cast<float>(val),
                             static_cast<unsigned>(delta), width));
#else
107 108
  return float16(
      __shfl_down(static_cast<half>(val), static_cast<unsigned>(delta), width));
109
#endif
110
}
111 112 113
template <>
__forceinline__ __device__ float16 CudaShuffleXorSync(unsigned mask,
                                                      float16 val, int width) {
114 115 116
#ifdef PADDLE_WITH_HIP
  return float16(__shfl_xor(static_cast<float>(val), width));
#else
117
  return float16(__shfl_xor(static_cast<half>(val), width));
118
#endif
119
}
120 121 122 123 124 125 126
#else
template <>
__forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask,
                                                       float16 val, int delta,
                                                       int width) {
  return float16(__shfl_down_sync(mask, static_cast<half>(val),
                                  static_cast<unsigned>(delta), width));
127
}
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

template <>
__forceinline__ __device__ paddle::platform::complex64 CudaShuffleDownSync(
    unsigned mask, paddle::platform::complex64 val, int delta, int width) {
  float real = static_cast<float>(__shfl_down_sync(
      mask, static_cast<float>(val.real), static_cast<unsigned>(delta), width));
  float imag = static_cast<float>(__shfl_down_sync(
      mask, static_cast<float>(val.imag), static_cast<unsigned>(delta), width));
  return paddle::platform::complex64(real, imag);
}

template <>
__forceinline__ __device__ paddle::platform::complex128 CudaShuffleDownSync(
    unsigned mask, paddle::platform::complex128 val, int delta, int width) {
  double real = static_cast<double>(
      __shfl_down_sync(mask, static_cast<double>(val.real),
                       static_cast<unsigned>(delta), width));
  double imag = static_cast<double>(
      __shfl_down_sync(mask, static_cast<double>(val.imag),
                       static_cast<unsigned>(delta), width));
  return paddle::platform::complex128(real, imag);
}

151 152 153 154 155
template <>
__forceinline__ __device__ float16 CudaShuffleXorSync(unsigned mask,
                                                      float16 val, int width) {
  return float16(__shfl_xor_sync(mask, static_cast<half>(val), width));
}
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

template <>
__forceinline__ __device__ paddle::platform::complex64 CudaShuffleXorSync(
    unsigned mask, paddle::platform::complex64 val, int width) {
  float real = static_cast<float>(
      __shfl_xor_sync(mask, static_cast<float>(val.real), width));
  float imag = static_cast<float>(
      __shfl_xor_sync(mask, static_cast<float>(val.imag), width));
  return paddle::platform::complex64(real, imag);
}

template <>
__forceinline__ __device__ paddle::platform::complex128 CudaShuffleXorSync(
    unsigned mask, paddle::platform::complex128 val, int width) {
  double real = static_cast<double>(
      __shfl_xor_sync(mask, static_cast<double>(val.real), width));
  double imag = static_cast<double>(
      __shfl_xor_sync(mask, static_cast<double>(val.imag), width));
  return paddle::platform::complex128(real, imag);
}
176 177
#endif

C
chengduoZH 已提交
178
template <typename T>
C
chengduoZH 已提交
179 180
__forceinline__ __device__ T CudaShuffleSync(unsigned mask, T val, int src_line,
                                             int width = 32) {
T
tianshuo78520a 已提交
181
#if defined(PADDLE_WITH_HIP)
C
chengduoZH 已提交
182 183
  return __shfl(val, src_line, width);
#else
C
chengduoZH 已提交
184
  return __shfl_sync(mask, val, src_line, width);
185
#endif
C
chengduoZH 已提交
186
}
187 188

template <typename T>
189 190 191 192 193
HOSTDEVICE T Infinity() {
  return INFINITY;
}

template <typename T>
194
__device__ T reduceSum(T val, int tid, int len) {
195 196 197 198 199 200 201 202 203
// NOTE(zcd): The warp size should be taken from the
// parameters of the GPU but not specified as 32 simply.
// To make the reduceSum more efficiently,
// I use Warp-Level Parallelism and assume the Warp size
// is 32 which may be different for different GPU,
// but most card's warp size is 32.
#ifdef PADDLE_WITH_HIP
  const int warpSize = 64;
#else
204
  const int warpSize = 32;
205
#endif
206 207 208 209 210
  __shared__ T shm[warpSize];
  unsigned mask = 0u;
  CREATE_SHFL_MASK(mask, tid < len);

  for (int offset = warpSize / 2; offset > 0; offset /= 2)
C
chengduoZH 已提交
211
    val += platform::CudaShuffleDownSync(mask, val, offset);
212 213

  if (tid < warpSize) shm[tid] = 0;
C
chengduoZH 已提交
214
  __syncthreads();
215 216 217 218 219 220 221 222 223 224 225

  if (tid % warpSize == 0) {
    shm[tid / warpSize] = val;
  }
  __syncthreads();

  CREATE_SHFL_MASK(mask, tid < warpSize);

  if (tid < warpSize) {
    val = shm[tid];
    for (int offset = warpSize / 2; offset > 0; offset /= 2)
C
chengduoZH 已提交
226
      val += platform::CudaShuffleDownSync(mask, val, offset);
227 228 229 230 231 232
  }
  return val;
}

}  // namespace platform
}  // namespace paddle