rnn_data_provider.py 2.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer.PyDataProvider2 import *

17 18 19
# Note that each config should has an independent provider
# in current design of PyDataProvider2.
#######################################################
20 21 22 23 24
data = [
    [[[1, 3, 2], [4, 5, 2]], 0],
    [[[0, 2], [2, 5], [0, 1, 2]], 1],
]

25
# Used for sequence_nest_rnn.conf
26
@provider(input_types=[integer_value_sub_sequence(10),
27
                       integer_value(3)],
28
          should_shuffle=False)
29 30 31 32
def process_subseq(settings, file_name):
    for d in data:
        yield d

33
# Used for sequence_rnn.conf
34
@provider(input_types=[integer_value_sequence(10),
35
                       integer_value(3)],
36
          should_shuffle=False)
37 38 39 40 41 42
def process_seq(settings, file_name):
    for d in data:
        seq = []
        for subseq in d[0]:
            seq += subseq
        yield seq, d[1]
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
# Used for sequence_nest_rnn_multi_input.conf
@provider(input_types=[integer_value_sub_sequence(10),
                       integer_value(3)],
          should_shuffle=False)
def process_subseq2(settings, file_name):
    for d in data:
        yield d

# Used for sequence_rnn_multi_input.conf
@provider(input_types=[integer_value_sequence(10),
                       integer_value(3)],
          should_shuffle=False)
def process_seq2(settings, file_name):
    for d in data:
        seq = []
        for subseq in d[0]:
            seq += subseq
        yield seq, d[1]

###########################################################
64 65 66 67 68
data2 = [
    [[[1, 2], [4, 5, 2]], [[5, 4, 1], [3, 1]] ,0],
    [[[0, 2], [2, 5], [0, 1, 2]],[[1, 5], [4], [2, 3, 6, 1]], 1],
]

69
# Used for sequence_nest_rnn_multi_unequalength_inputs.conf
70 71 72 73 74 75 76 77 78
@provider(input_types=[integer_value_sub_sequence(10),
                       integer_value_sub_sequence(10),
                       integer_value(2)],
          should_shuffle=False)
def process_unequalength_subseq(settings, file_name):
    for d in data2:
        yield d


79
# Used for sequence_rnn_multi_unequalength_inputs.conf
80 81 82 83 84 85 86 87 88 89 90
@provider(input_types=[integer_value_sequence(10),
                       integer_value_sequence(10),
                       integer_value(2)],
          should_shuffle=False)
def process_unequalength_seq(settings, file_name):
    for d in data2:
        words1=reduce(lambda x,y: x+y, d[0])
        words2=reduce(lambda x,y: x+y, d[1])
        yield words1, words2, d[2]