kernel_factory.h 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <ostream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>

#include "paddle/pten/common/backend.h"
#include "paddle/pten/common/data_type.h"
#include "paddle/pten/common/layout.h"
26
#include "paddle/pten/core/compat/convert_utils.h"
27
#include "paddle/pten/core/enforce.h"
28
#include "paddle/pten/core/type_defs.h"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#include "paddle/utils/flat_hash_map.h"
#include "paddle/utils/small_vector.h"

namespace pten {

using DataType = paddle::experimental::DataType;
using DataLayout = paddle::experimental::DataLayout;

/**
 * [ Naming considerations ]
 *
 * The tensor operation library contains many kernels, and the computation
 * in each specific scenario is represented by an kernel.
 *
 * We directly named it `Kernel` instead of `Kernel`, the tensor operation
 * library here and fluid are independent, avoiding developers from
 * misunderstanding the relationship between the two concepts.
 */

class KernelContext;

class KernelKey {
 public:
  KernelKey() = default;

  KernelKey(Backend backend, DataLayout layout, DataType dtype)
      : backend_(backend), layout_(layout), dtype_(dtype) {}

  Backend backend() const { return backend_; }
  DataLayout layout() const { return layout_; }
  DataType dtype() const { return dtype_; }

  struct Hash {
    // Note: Now the number of bits we need does not exceed 32 bits, so there is
    // no need to use 64 bits. If needed in the future, it can be expanded,
    // but now we don’t over-design.
    uint32_t operator()(const KernelKey& key) const;
  };

  uint32_t hash_value() const { return Hash()(*this); }

  bool operator<(const KernelKey& key) const {
    return hash_value() < key.hash_value();
  }

  bool operator==(const KernelKey& key) const {
    return hash_value() == key.hash_value();
  }

  bool operator!=(const KernelKey& key) const {
    return hash_value() != key.hash_value();
  }

 private:
  // In total should be smaller than 32.
  constexpr static int kBackendBitLength = 8;
  constexpr static int kDataLayoutBitLength = 4;
  constexpr static int kDataTypeBitLength = 8;

  Backend backend_{Backend::UNDEFINED};
  DataLayout layout_{DataLayout::UNDEFINED};
  DataType dtype_{DataType::UNDEFINED};
};

// TODO(chenweihang): how deal with vector<Param>?
struct TensorArgDef {
  Backend backend;
  DataLayout layout;
  DataType dtype;

  TensorArgDef(Backend in_backend, DataLayout in_layout, DataType in_dtype)
      : backend(in_backend), layout(in_layout), dtype(in_dtype) {}

  TensorArgDef& SetBackend(Backend in_backend) {
    backend = in_backend;
    return *this;
  }

  TensorArgDef& SetDataLayout(DataLayout in_layout) {
    layout = in_layout;
    return *this;
  }

  TensorArgDef& SetDataType(DataType in_dtype) {
    dtype = in_dtype;
    return *this;
  }
};

struct AttributeArgDef {
  std::type_index type_index;

  explicit AttributeArgDef(std::type_index type_index)
      : type_index(type_index) {}
};

class KernelArgsDef {
 public:
  KernelArgsDef() = default;

  void AppendInput(Backend backend, DataLayout layout, DataType dtype) {
    input_defs_.emplace_back(TensorArgDef(backend, layout, dtype));
  }

  void AppendOutput(Backend backend, DataLayout layout, DataType dtype) {
    output_defs_.emplace_back(TensorArgDef(backend, layout, dtype));
  }

  void AppendAttribute(std::type_index type_index) {
    attribute_defs_.emplace_back(AttributeArgDef(type_index));
  }

  const paddle::SmallVector<TensorArgDef>& input_defs() const {
    return input_defs_;
  }

  const paddle::SmallVector<TensorArgDef>& output_defs() const {
    return output_defs_;
  }

  const paddle::SmallVector<AttributeArgDef>& attribute_defs() const {
    return attribute_defs_;
  }

  paddle::SmallVector<TensorArgDef>& input_defs() { return input_defs_; }

  paddle::SmallVector<TensorArgDef>& output_defs() { return output_defs_; }

  paddle::SmallVector<AttributeArgDef>& attribute_defs() {
    return attribute_defs_;
  }

 private:
  paddle::SmallVector<TensorArgDef> input_defs_{{}};
  paddle::SmallVector<TensorArgDef> output_defs_{{}};
  paddle::SmallVector<AttributeArgDef> attribute_defs_{{}};
};

class Kernel {
 public:
  // for map element contruct
  Kernel() = default;

172 173
  explicit Kernel(KernelFn fn, void* variadic_fn)
      : fn_(fn), variadic_fn_(variadic_fn) {}
174 175 176

  void operator()(KernelContext* ctx) const { fn_(ctx); }

177 178 179 180 181 182
  template <typename Fn>
  Fn GetVariadicKernelFn() const {
    auto* func = reinterpret_cast<Fn>(variadic_fn_);
    return func;
  }

183 184 185 186 187 188 189 190 191 192 193 194
  KernelArgsDef* mutable_args_def() { return &args_def_; }

  const KernelArgsDef& args_def() const { return args_def_; }

  TensorArgDef& InputAt(size_t idx) { return args_def_.input_defs().at(idx); }

  TensorArgDef& OutputAt(size_t idx) { return args_def_.output_defs().at(idx); }

  bool IsValid() { return fn_ != nullptr; }

 private:
  KernelFn fn_{nullptr};
195
  void* variadic_fn_ = nullptr;
196 197 198
  KernelArgsDef args_def_;
};

199 200 201 202
using KernelKeyMap = paddle::flat_hash_map<KernelKey, Kernel, KernelKey::Hash>;

using KernelNameMap = paddle::flat_hash_map<std::string, KernelKeyMap>;

203 204 205 206 207 208 209 210 211 212
/**
 * Note: Each Computation need a basic kernel map that named by kernel_name.
 *       Such as for scale op, KernelMap contains a `scale` kernel map,
 *       if it still need other overload kernel, the op name can be
 *       `scale.***`.
 */
class KernelFactory {
 public:
  static KernelFactory& Instance();

213
  KernelNameMap& kernels() { return kernels_; }
214 215

  bool HasCompatiblePtenKernel(const std::string& op_type) const {
216
    return kernels_.find(TransToPtenKernelName(op_type)) != kernels_.end();
217 218
  }

Y
YuanRisheng 已提交
219
  const Kernel& SelectKernelOrThrowError(const std::string& kernel_name,
220 221
                                         const KernelKey& kernel_key) const;

Y
YuanRisheng 已提交
222
  const Kernel& SelectKernelOrThrowError(const std::string& kernel_name,
223 224 225 226
                                         Backend backend,
                                         DataLayout layout,
                                         DataType dtype) const;

Y
YuanRisheng 已提交
227
  Kernel SelectKernel(const std::string& kernel_name,
228 229
                      const KernelKey& kernel_key) const;

230
  KernelKeyMap SelectKernelMap(const std::string& kernel_name) const;
231

232 233 234
 private:
  KernelFactory() = default;

235
  KernelNameMap kernels_;
236 237 238 239 240 241 242 243 244 245 246 247 248
};

inline std::ostream& operator<<(std::ostream& os, const KernelKey& kernel_key) {
  os << "(" << kernel_key.backend() << ", " << kernel_key.layout() << ", "
     << kernel_key.dtype() << ")";
  return os;
}

std::ostream& operator<<(std::ostream& os, const Kernel& kernel);

std::ostream& operator<<(std::ostream& os, KernelFactory& kernel_factory);

}  // namespace pten