operator.h 17.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36 37 38 39

namespace paddle {
namespace framework {

40
/// If a variable is a empty variable, that name will be used.
41
constexpr char kEmptyVarName[] = "@EMPTY@";
42 43 44

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
45
constexpr char kTempVarName[] = "@TEMP@";
46 47 48 49

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
50
constexpr char kGradVarSuffix[] = "@GRAD";
51

M
minqiyang 已提交
52 53
constexpr size_t kGradVarSuffixSize = 5U;

54
/// Variables with this suffix are supposed to be filled up with zeros.
55
constexpr char kZeroVarSuffix[] = "@ZERO";
56

C
chengduo 已提交
57 58 59
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
60
// define some kernel priority
61
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
62 63
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

64
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
65 66 67 68 69
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
70 71
}

M
minqiyang 已提交
72
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
73
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
74 75 76 77 78 79 80
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
}

Q
qiaolongfei 已提交
81
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
82 83
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
84

Q
Qiao Longfei 已提交
85
class OperatorBase;
86
class ExecutionContext;
87

X
Xin Pan 已提交
88 89
class RuntimeContext {
 public:
X
Xin Pan 已提交
90 91
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
92

X
Xin Pan 已提交
93 94 95 96
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
97 98 99 100
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
101
/**
X
Xin Pan 已提交
102
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
103 104 105 106 107 108
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
109 110
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
111

Q
Qiao Longfei 已提交
112 113
  virtual ~OperatorBase() {}

114
  /// Executor will call this interface function to Run an op.
115 116
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
117

T
typhoonzero 已提交
118 119 120
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

121 122 123
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
124

125 126
  virtual bool SupportGPU() const { return false; }

127 128
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
129
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
130 131
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
132 133
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
134 135 136
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
137

Y
Yu Yang 已提交
138 139
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
140

141
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
142
  //! Get a input with argument's name described in `op_proto`
143
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
144
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
145
  const std::vector<std::string>& Inputs(const std::string& name) const;
146
  //! Get all inputs variable names
Q
qijun 已提交
147 148
  std::vector<std::string> InputVars() const;

149
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
150
  //! Get a output with argument's name described in `op_proto`
151
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
152 153
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
154
  const std::vector<std::string>& Outputs(const std::string& name) const;
155
  //! Get all outputs variable names
Y
Yu Yang 已提交
156
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
157

158
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
159
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
160 161
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
162

Q
qiaolongfei 已提交
163
 protected:
Q
Qiao Longfei 已提交
164
  std::string type_;
D
dongzhihong 已提交
165
  // NOTE: in case of OpGrad, inputs_ contains:
166
  // I (Inputs)
D
dongzhihong 已提交
167 168
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
169
  VariableNameMap inputs_;
Y
Yu Yang 已提交
170

D
dongzhihong 已提交
171 172
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
173
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
174
  AttributeMap attrs_;
175 176
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
177 178 179 180

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
181 182
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
183 184
};

185
class ExecutionContext {
Y
Yan Chunwei 已提交
186
 public:
187
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
188 189 190
                   const platform::DeviceContext& device_context,
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
191

Q
qiaolongfei 已提交
192 193 194 195
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
196
  template <typename T>
Y
Yu Yang 已提交
197 198
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
199 200
  }

201
  bool HasInput(const std::string& name) const;
202

203
  bool HasOutput(const std::string& name) const;
204

Y
Yu Yang 已提交
205
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
206
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
207 208
  }

Y
Yu Yang 已提交
209
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
210
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
211 212
  }

X
Xin Pan 已提交
213
  const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
214

X
Xin Pan 已提交
215
  Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
216

217 218
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
X
Xin Pan 已提交
219 220 221 222
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
Y
Yan Chunwei 已提交
223
    std::vector<const Variable*> res;
X
Xin Pan 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    res.reserve(it->second.size());
    std::transform(it->second.begin(), it->second.end(),
                   std::back_inserter(res),
                   [this](Variable* var) { return var; });
    return res;
  }

  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
    auto names = op_.Outputs(name);
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

  const std::vector<Variable*> LegacyMultiInputVar(
      const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<Variable*> res;
244
    res.reserve(names.size());
245 246
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
247 248
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
249
                   });
Y
Yan Chunwei 已提交
250 251 252
    return res;
  }

X
Xin Pan 已提交
253
  std::vector<Variable*> LegacyMultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
254
    auto names = op_.Outputs(name);
255
    std::vector<Variable*> res;
256
    res.reserve(names.size());
257 258
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
259 260
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
261
                   });
Y
Yan Chunwei 已提交
262 263 264
    return res;
  }

265 266
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
267
    auto* var = InputVar(name);
268
    return var == nullptr ? nullptr : &var->Get<T>();
269 270 271 272
  }

  template <typename T>
  T* Output(const std::string& name) const {
273
    auto var = OutputVar(name);
274
    return var == nullptr ? nullptr : var->GetMutable<T>();
275 276
  }

X
Xin Pan 已提交
277
  template <typename T>
X
clean  
Xin Pan 已提交
278 279
  const T* LegacyInput(const std::string& name) const {
    auto* var = LegacyInputVar(name);
X
Xin Pan 已提交
280 281 282 283
    return var == nullptr ? nullptr : &var->Get<T>();
  }

  template <typename T>
X
clean  
Xin Pan 已提交
284 285
  T* LegacyOutput(const std::string& name) const {
    auto var = LegacyOutputVar(name);
X
Xin Pan 已提交
286 287 288
    return var == nullptr ? nullptr : var->GetMutable<T>();
  }

X
clean  
Xin Pan 已提交
289
  const Variable* LegacyInputVar(const std::string& name) const;
X
Xin Pan 已提交
290

X
clean  
Xin Pan 已提交
291
  Variable* LegacyOutputVar(const std::string& name) const;
X
Xin Pan 已提交
292

293 294
  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
X
Xin Pan 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> const T* {
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
    return res;
  }

  template <typename T>
  const std::vector<const T*> LegacyMultiInput(const std::string& name) const {
327 328 329 330
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
331
                   [&](const std::string& sub_name) -> const T* {
332
                     auto var = scope_.FindVar(sub_name);
333
                     return var == nullptr ? nullptr : &var->Get<T>();
334 335 336 337 338
                   });
    return res;
  }

  template <typename T>
X
Xin Pan 已提交
339
  std::vector<T*> LegacyMultiOutput(const std::string& name) const {
340
    auto names = op_.Outputs(name);
341
    std::vector<T*> res;
342 343
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
344
                   [&](const std::string& sub_name) -> T* {
345
                     auto var = scope_.FindVar(sub_name);
346
                     return var == nullptr ? nullptr : var->GetMutable<T>();
347 348 349 350
                   });
    return res;
  }

351
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
352

Q
QI JUN 已提交
353 354 355 356 357
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

358
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
359
    return device_context_;
Q
qijun 已提交
360
  }
Q
qijun 已提交
361

Q
QI JUN 已提交
362 363 364 365 366 367 368 369
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
370
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
371 372 373
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
374

D
dzhwinter 已提交
375
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
376 377 378 379
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

X
Xin Pan 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
    auto tmp_allocation_ptr = platform::DeviceTemporaryAllocator::Instance()
                                  .Get<DevContext>(dev_ctx)
                                  .Allocate(product(dim) * sizeof(T));
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

    PADDLE_ENFORCE(
        dynamic_cast<platform::TemporaryAllocation*>(allocation_ptr) != nullptr,
        "The AllocationPtr must be TemporaryAllocation.");
394
    PADDLE_ENFORCE_GE(allocation_ptr->size(),
X
Xin Pan 已提交
395 396 397 398 399 400 401 402 403
                      framework::product(dim) * sizeof(T));

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

404
 private:
405 406
  const OperatorBase& op_;
  const Scope& scope_;
407
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
408
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
409 410
};

411 412 413
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
414
template <>
X
clean  
Xin Pan 已提交
415
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
416 417
    const std::string& name) const;

418 419 420 421
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

X
Xin Pan 已提交
422 423 424 425
template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
    const std::string& name) const;

426 427 428
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
429
template <>
X
clean  
Xin Pan 已提交
430
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const;
X
Xin Pan 已提交
431

432 433 434 435
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
436
class OpKernelBase {
Q
qijun 已提交
437
 public:
Q
qijun 已提交
438
  /**
439
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
440 441
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
442
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
443 444
   */

445
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
446

Y
Yu Yang 已提交
447 448 449 450 451 452 453
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
454 455
};

Y
Yu Yang 已提交
456 457
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
458
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
459
  using OpKernelMap =
Y
yuyang18 已提交
460
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
461

Y
Yu Yang 已提交
462 463
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
464 465
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
466 467 468 469
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
470
  }
Y
Yan Chunwei 已提交
471

472
  bool SupportGPU() const override {
Y
Yu Yang 已提交
473 474 475 476 477
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
478 479
  }

480 481 482
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
483

X
Xin Pan 已提交
484 485
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
486

487
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
488 489

 protected:
490 491 492
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
493 494

 private:
495
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
496
  // same.
497
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
498
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
499 500 501 502 503 504 505

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
506 507 508 509
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
510 511 512 513

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
514 515
};

Y
Yu Yang 已提交
516 517
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
518 519
}  // namespace framework
}  // namespace paddle