jit_code.cc 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_code.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "paddle/fluid/platform/cpu_info.h"

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace gen {

using namespace platform::jit;  // NOLINT

T
tensor-tang 已提交
27
bool VXXJitCode::init(int d, int scalar_index) {
28 29
  // It's not necessary to use avx512 since it would slow down the frequency
  // and this kernel is not compute bound.
T
tensor-tang 已提交
30
  return MayIUse(avx) && scalar_index >= 0 && scalar_index <= 2;
31 32
}

T
tensor-tang 已提交
33
void VXXJitCode::generate() {
T
tensor-tang 已提交
34
  // do not need push stack, and do not need save avx512reg if do not use avx512
T
tensor-tang 已提交
35
  int offset = 0;
T
tensor-tang 已提交
36 37 38
  if (with_relu_) {
    vxorps(ymm_zero, ymm_zero, ymm_zero);
  }
T
tensor-tang 已提交
39 40 41 42 43
  if (scalar_index_ == 1) {
    vbroadcastss(ymm_src1, ptr[param1]);
  } else if (scalar_index_ == 2) {
    vbroadcastss(ymm_src2, ptr[param2]);
  }
T
tensor-tang 已提交
44
  for (int i = 0; i < num_ / AVX_FLOAT_BLOCK; ++i) {
T
tensor-tang 已提交
45 46 47 48 49 50
    if (scalar_index_ != 1) {
      vmovups(ymm_src1, ptr[param1 + offset]);
    }
    if (scalar_index_ != 2) {
      vmovups(ymm_src2, ptr[param2 + offset]);
    }
T
tensor-tang 已提交
51 52 53 54 55
    if (type_ == operand_type::mul) {
      vmulps(ymm_dst, ymm_src1, ymm_src2);
    } else if (type_ == operand_type::add) {
      vaddps(ymm_dst, ymm_src1, ymm_src2);
    }
T
tensor-tang 已提交
56 57 58
    if (with_relu_) {
      vmaxps(ymm_dst, ymm_zero, ymm_dst);
    }
T
tensor-tang 已提交
59 60 61 62 63
    vmovups(ptr[param3 + offset], ymm_dst);
    offset += sizeof(float) * AVX_FLOAT_BLOCK;
  }
  int rest = num_ % AVX_FLOAT_BLOCK;
  if (rest >= 4) {
T
tensor-tang 已提交
64 65 66 67 68 69
    if (scalar_index_ != 1) {
      vmovups(xmm_src1, ptr[param1 + offset]);
    }
    if (scalar_index_ != 2) {
      vmovups(xmm_src2, ptr[param2 + offset]);
    }
T
tensor-tang 已提交
70 71 72 73 74
    if (type_ == operand_type::mul) {
      vmulps(xmm_dst, xmm_src1, xmm_src2);
    } else if (type_ == operand_type::add) {
      vaddps(xmm_dst, xmm_src1, xmm_src2);
    }
T
tensor-tang 已提交
75 76 77
    if (with_relu_) {
      vmaxps(xmm_dst, xmm_zero, xmm_dst);
    }
T
tensor-tang 已提交
78 79 80 81 82
    vmovups(ptr[param3 + offset], xmm_dst);
    offset += sizeof(float) * 4;
    rest -= 4;
  }
  if (rest >= 2) {
T
tensor-tang 已提交
83 84 85 86 87 88
    if (scalar_index_ != 1) {
      vmovups(xmm_src1, ptr[param1 + offset]);
    }
    if (scalar_index_ != 2) {
      vmovups(xmm_src2, ptr[param2 + offset]);
    }
T
tensor-tang 已提交
89 90 91 92 93
    if (type_ == operand_type::mul) {
      vmulps(xmm_dst, xmm_src1, xmm_src2);
    } else if (type_ == operand_type::add) {
      vaddps(xmm_dst, xmm_src1, xmm_src2);
    }
T
tensor-tang 已提交
94 95 96
    if (with_relu_) {
      vmaxps(xmm_dst, xmm_zero, xmm_dst);
    }
T
tensor-tang 已提交
97 98 99 100 101
    vmovq(ptr[param3 + offset], xmm_dst);
    offset += sizeof(float) * 2;
    rest -= 2;
  }
  if (rest > 0) {
T
tensor-tang 已提交
102 103 104 105 106 107
    if (scalar_index_ != 1) {
      vmovups(xmm_src1, ptr[param1 + offset]);
    }
    if (scalar_index_ != 2) {
      vmovups(xmm_src2, ptr[param2 + offset]);
    }
T
tensor-tang 已提交
108 109 110 111 112
    if (type_ == operand_type::mul) {
      vmulss(xmm_dst, xmm_src1, xmm_src2);
    } else if (type_ == operand_type::add) {
      vaddss(xmm_dst, xmm_src1, xmm_src2);
    }
T
tensor-tang 已提交
113 114 115
    if (with_relu_) {
      vmaxps(xmm_dst, xmm_zero, xmm_dst);
    }
T
tensor-tang 已提交
116 117 118 119
    vmovss(ptr[param3 + offset], xmm_dst);
  }
  ret();
}
T
tensor-tang 已提交
120

T
tensor-tang 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
bool ReluJitCode::init(int d) { return MayIUse(avx); }

void ReluJitCode::generate() {
  int offset = 0;
  vxorps(ymm_zero, ymm_zero, ymm_zero);
  for (int i = 0; i < num_ / AVX_FLOAT_BLOCK; ++i) {
    vmovups(ymm_src, ptr[param1 + offset]);
    vmaxps(ymm_dst, ymm_zero, ymm_src);
    vmovups(ptr[param2 + offset], ymm_dst);
    offset += sizeof(float) * AVX_FLOAT_BLOCK;
  }
  int rest = num_ % AVX_FLOAT_BLOCK;
  if (rest >= 4) {
    vmovups(xmm_src, ptr[param1 + offset]);
    vmaxps(xmm_dst, xmm_zero, xmm_src);
    vmovups(ptr[param2 + offset], xmm_dst);
    offset += sizeof(float) * 4;
    rest -= 4;
  }
  if (rest >= 2) {
    vmovups(xmm_src, ptr[param1 + offset]);
    vmaxps(xmm_dst, xmm_zero, xmm_src);
    vmovq(ptr[param2 + offset], xmm_dst);
    offset += sizeof(float) * 2;
    rest -= 2;
  }
  if (rest > 0) {
    vmovups(xmm_src, ptr[param1 + offset]);
    vmaxps(xmm_dst, xmm_zero, xmm_src);
    vmovss(ptr[param2 + offset], xmm_dst);
  }
  ret();
}
T
tensor-tang 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

bool VExpJitCode::init(int d) {
  return MayIUse(avx) && d == 8;  // only 8 yet
}

#define ALIGN32 __attribute__((aligned(32)))
#define EXP_HIG 88.3762626647949f
#define EXP_LOW -88.3762626647949f
#define CEPHES_LOG2EF 1.44269504088896341
#define CEPHES_EXP_C1 0.693359375
#define CEPHES_EXP_C2 -2.12194440e-4
#define CEPHES_EXP_P0 1.9875691500E-4
#define CEPHES_EXP_P1 1.3981999507E-3
#define CEPHES_EXP_P2 8.3334519073E-3
#define CEPHES_EXP_P3 4.1665795894E-2
#define CEPHES_EXP_P4 1.6666665459E-1
#define CEPHES_EXP_P5 5.0000001201E-1

#define REPEAT_8TIMES(val) val, val, val, val, val, val, val, val

#define OFFSET_EXP_0P5 1 * AVX_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_HIG 2 * AVX_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_LOW 3 * AVX_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_LOG2EF 4 * AVX_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_C1 5 * AVX_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_C2 6 * AVX_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P0 7 * AVX_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P1 8 * AVX_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P2 9 * AVX_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P3 10 * AVX_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P4 11 * AVX_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P5 12 * AVX_FLOAT_BLOCK * sizeof(float)

static const float exp_float_consts[] ALIGN32 = {
    REPEAT_8TIMES(1.f),           REPEAT_8TIMES(0.5f),
    REPEAT_8TIMES(EXP_HIG),       REPEAT_8TIMES(EXP_LOW),
    REPEAT_8TIMES(CEPHES_LOG2EF), REPEAT_8TIMES(CEPHES_EXP_C1),
    REPEAT_8TIMES(CEPHES_EXP_C2), REPEAT_8TIMES(CEPHES_EXP_P0),
    REPEAT_8TIMES(CEPHES_EXP_P1), REPEAT_8TIMES(CEPHES_EXP_P2),
    REPEAT_8TIMES(CEPHES_EXP_P3), REPEAT_8TIMES(CEPHES_EXP_P4),
    REPEAT_8TIMES(CEPHES_EXP_P5)};

static const int exp_int_0x7f[] ALIGN32 = {REPEAT_8TIMES(0x7f)};
static int g_tmp_mem[16] ALIGN32 = {0};

void VExpJitCode::generate() {
  // in: ymm0, out: ymm1
T
tensor-tang 已提交
201
  // use ymm 0~5, rax
T
tensor-tang 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
  int offset = 0;
  vmovups(ymm_src, ptr[param1 + offset]);
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_HIG]);
  vminps(ymm_src, ymm_src, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOW]);
  vmaxps(ymm_src, ymm_src, ymm_tmp);
  // express exp(x) as exp(g + n*log(2))
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOG2EF]);
  vmulps(ymm_fx, ymm_src, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_0P5]);
  vaddps(ymm_fx, ymm_fx, ymm_tmp);
  vroundps(ymm_fy, ymm_fx, 0x01);
  // if greater, substract 1
  vcmpgtps(ymm_mask, ymm_fy, ymm_fx);
  vmovaps(ymm_tmp, ptr[reg_ptr_global]);
  vandps(ymm_mask, ymm_mask, ymm_tmp);
  vsubps(ymm_fx, ymm_fy, ymm_mask);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_C1]);
  vmulps(ymm_fy, ymm_fx, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_C2]);
T
tensor-tang 已提交
223 224
  ymm_t ymm_z = ymm_t(ymm_mask.getIdx());
  vmulps(ymm_z, ymm_fx, ymm_tmp);
T
tensor-tang 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  vsubps(ymm_src, ymm_src, ymm_fy);
  vsubps(ymm_src, ymm_src, ymm_z);
  vmulps(ymm_z, ymm_src, ymm_src);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P0]);
  vmulps(ymm_dst, ymm_src, ymm_tmp);
  for (size_t i = OFFSET_EXP_P1; i < OFFSET_EXP_P5;
       i += (AVX_FLOAT_BLOCK * sizeof(float))) {
    vmovaps(ymm_tmp, ptr[reg_ptr_global + i]);  // P1~P4
    vaddps(ymm_dst, ymm_dst, ymm_tmp);
    vmulps(ymm_dst, ymm_dst, ymm_src);
  }
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P5]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  vmulps(ymm_dst, ymm_dst, ymm_z);
  vaddps(ymm_dst, ymm_dst, ymm_src);
  vmovaps(ymm_tmp, ptr[reg_ptr_global]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  // build 2^n
  ymm_t ymm_int = ymm_fx;
  vcvttps2dq(ymm_int, ymm_fx);
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_int_0x7f));
  vmovdqa(ymm_tmp, ptr[reg_ptr_global]);
  if (MayIUse(avx2)) {
    vpaddd(ymm_int, ymm_int, ymm_tmp);
    vpslld(ymm_int, ymm_int, 23);
  } else if (MayIUse(avx)) {
T
tensor-tang 已提交
251 252 253 254 255 256
    xmm_t xtmp1 = xmm_t(ymm_int.getIdx());
    xmm_t xtmp2 = xmm_t(ymm_tmp.getIdx());
    reg64_t reg_ptr_tmp = reg_ptr_global;
    mov(reg_ptr_tmp, reinterpret_cast<size_t>(g_tmp_mem));
    vmovdqa(ptr[reg_ptr_tmp], ymm_int);
    vmovdqa(ptr[reg_ptr_tmp + AVX_FLOAT_BLOCK * sizeof(float)], ymm_tmp);
T
tensor-tang 已提交
257 258
    vpaddd(xtmp1, xtmp1, xtmp2);
    vpslld(xtmp1, xtmp1, 23);
T
tensor-tang 已提交
259
    vmovdqa(ptr[reg_ptr_tmp], xtmp1);
T
tensor-tang 已提交
260
    // next 128bits
T
tensor-tang 已提交
261
    vmovdqa(xtmp1, ptr[reg_ptr_tmp + 4 /*xmm float block*/ * sizeof(float)]);
T
tensor-tang 已提交
262
    vmovdqa(xtmp2,
T
tensor-tang 已提交
263
            ptr[reg_ptr_tmp +
T
tensor-tang 已提交
264 265 266
                (AVX_FLOAT_BLOCK + 4 /*xmm float block*/) * sizeof(float)]);
    vpaddd(xtmp1, xtmp1, xtmp2);
    vpslld(xtmp1, xtmp1, 23);
T
tensor-tang 已提交
267
    vmovdqa(ptr[reg_ptr_tmp + 4 /*xmm float block*/ * sizeof(float)], xtmp1);
T
tensor-tang 已提交
268
    // load out
T
tensor-tang 已提交
269
    vmovdqa(ymm_int, ptr[reg_ptr_tmp]);
T
tensor-tang 已提交
270 271 272 273
  }
  vmulps(ymm_dst, ymm_dst, ymm_int);
  vmovups(ptr[param2 + offset], ymm_dst);

T
tensor-tang 已提交
274
  ret();
T
tensor-tang 已提交
275 276
}

277 278 279 280 281
}  // namespace gen
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle