depthwise_conv.h 71.6 KB
Newer Older
H
hong 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zlx 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hong 已提交
15
#pragma once
A
Abhinav Arora 已提交
16
#include <vector>
17

H
hong 已提交
18 19 20 21
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/phi/core/hostdevice.h"

22 23 24 25 26 27 28
#ifdef __NVCC__
#include <cub/cub.cuh>
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
H
hong 已提交
29

30 31
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
32
#include "paddle/phi/kernels/funcs/math_function.h"
Z
zlx 已提交
33 34 35 36 37

namespace paddle {
namespace operators {
namespace math {

H
hong 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
using DataLayout = framework::DataLayout;

/*
 * \brief Compute the depthwise convolution which include
 * forward process and backpropagation process
 */
template <typename DeviceContext,
          typename T,
          bool fuse_relu_before_conv = false>
class DepthwiseConvFunctor {
 public:
  void operator()(const DeviceContext& context,
                  const framework::Tensor& input,
                  const framework::Tensor& filter,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::vector<int>& dilations,
                  framework::Tensor* output,
                  const DataLayout data_layout = DataLayout::kNCHW);
};

template <typename DeviceContext,
          typename T,
          bool fuse_relu_before_conv = false>
class DepthwiseConvInputGradFunctor {
 public:
  void operator()(const DeviceContext& context,
                  const framework::Tensor& input,
                  const framework::Tensor& filter,
                  const framework::Tensor& output_grad,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::vector<int>& dilations,
                  framework::Tensor* input_grad,
                  const DataLayout data_layout = DataLayout::kNCHW);
};

template <typename DeviceContext,
          typename T,
          bool fuse_relu_before_conv = false>
class DepthwiseConvFilterGradFunctor {
 public:
  void operator()(const DeviceContext& context,
                  const framework::Tensor& input,
                  const framework::Tensor& output_grad,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::vector<int>& dilations,
                  framework::Tensor* filter_grad,
                  const DataLayout data_layout = DataLayout::kNCHW);
};

90
template <typename T>
W
wangguanzhong 已提交
91
static __forceinline__ __device__ T WarpReduceSum(T val, int warp_size) {
92 93
  typedef cub::WarpReduce<T> WarpReduce;
  typename WarpReduce::TempStorage temp_storage;
W
wangguanzhong 已提交
94 95 96
  val = WarpReduce(temp_storage).Sum(val, warp_size);
  return val;
}
97

W
wangguanzhong 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
template <typename T>
__forceinline__ __device__ T BlockReduceSum(T val) {
  static __shared__ T shared[32];
  int thread_id = threadIdx.x + threadIdx.y * blockDim.x +
                  threadIdx.z * blockDim.x * blockDim.y;
  int warp_size = min(blockDim.x * blockDim.y * blockDim.z, warpSize);
  int lane = thread_id % warp_size;
  int wid = thread_id / warp_size;

  val = WarpReduceSum(val, warp_size);  // Each warp performs partial reduction

  if (lane == 0) shared[wid] = val;  // Write reduced value to shared memory
  __syncthreads();                   // Wait for all partial reductions

  // read from shared memory only if that warp existed
  int block_size = blockDim.x * blockDim.y * blockDim.z;
  if (thread_id < (block_size - 1) / warp_size + 1) {
    val = shared[lane];
  } else {
    val = static_cast<T>(0);
  }
119

W
wangguanzhong 已提交
120 121 122 123 124 125 126 127
  if (wid == 0) {
    val = WarpReduceSum(val, warp_size);  // Final reduce within first warp
  }
  __syncthreads();
  if (thread_id != 0) {
    val = static_cast<T>(0);
  }
  return val;
128 129
}

130 131 132 133 134 135 136 137
#define ARG_DEFINE_KernelDepthwiseConv                                         \
  const T *const input_data, const T *const filter_data, const int batch_size, \
      const int output_channels, const int output_height,                      \
      const int output_width, const int input_channels,                        \
      const int input_height, const int input_width,                           \
      const int filter_multiplier, const int filter_height,                    \
      const int filter_width, const int stride_height, const int stride_width, \
      const int padding_height, const int padding_width,                       \
138
      const int dilate_height, const int dilate_width, T *const output_data
139

140 141
// A Cuda kernel to compute the depthwise convolution forward pass
// in NCHW format.
142
template <typename T, bool fuse_relu_before_conv>
143 144 145 146 147 148 149 150 151 152 153 154 155
__device__ __inline__ void KernelDepthwiseConvNCHW(
    ARG_DEFINE_KernelDepthwiseConv) {
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx >= (output_channels * batch_size * output_height * output_width))
    return;

  const int w_out = idx % output_width;
  const int h_out = (idx / output_width) % output_height;
  const int c_out = (idx / output_width / output_height) % output_channels;
  const int batch = idx / output_width / output_height / output_channels;

  const int c_in = c_out / filter_multiplier;
  const T* weight = filter_data + c_out * filter_height * filter_width;
156
  T value(0);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  const int h_in_start = -padding_height + h_out * stride_height;
  const int w_in_start = -padding_width + w_out * stride_width;
  const int h_in_end = h_in_start + filter_height * dilate_height;
  const int w_in_end = w_in_start + filter_width * dilate_width;

  int in_offset =
      ((batch * input_channels + c_in) * input_height) * input_width;

  const int h_end = h_in_end < input_height ? h_in_end : input_height;
  const int w_end = w_in_end < input_width ? w_in_end : input_width;
  const int h_start = h_in_start > 0 ? h_in_start : 0;
  const int w_start = w_in_start > 0 ? w_in_start : 0;
  int weight_offset = 0;

#pragma unroll
  for (int h_in = h_in_start; h_in < h_in_end; h_in += dilate_height) {
#pragma unroll
    for (int w_in = w_in_start; w_in < w_in_end; w_in += dilate_width) {
      if (h_in >= h_start && h_in < h_end && w_in >= w_start && w_in < w_end) {
        int offset = in_offset + h_in * input_width + w_in;
        T in_data = input_data[offset];
        if (fuse_relu_before_conv) {
179
          value += weight[weight_offset] * T(max(0.0f, double(in_data)));
180 181 182
        } else {
          value += weight[weight_offset] * in_data;
        }
183
      }
184 185 186 187 188 189 190 191
      weight_offset++;
    }
  }
  int index = batch * output_channels * output_height * output_width +
              c_out * output_height * output_width + h_out * output_width +
              w_out;
  output_data[index] = value;
}
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
// A Cuda kernel to compute the depthwise convolution forward pass
// in NHWC format.
template <typename T, bool fuse_relu_before_conv>
__device__ __inline__ void KernelDepthwiseConvNHWC(
    ARG_DEFINE_KernelDepthwiseConv) {
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx >= (output_channels * batch_size * output_height * output_width))
    return;

  const int c_out = idx % output_channels;
  const int w_out = (idx / output_channels) % output_width;
  const int h_out = (idx / output_channels / output_width) % output_height;
  const int batch = idx / output_width / output_height / output_channels;

  const int c_in = c_out / filter_multiplier;
208
  T value(0);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  const int h_in_start = -padding_height + h_out * stride_height;
  const int w_in_start = -padding_width + w_out * stride_width;
  const int h_in_end = h_in_start + filter_height * dilate_height;
  const int w_in_end = w_in_start + filter_width * dilate_width;

  const int h_end = h_in_end < input_height ? h_in_end : input_height;
  const int w_end = w_in_end < input_width ? w_in_end : input_width;
  const int h_start = h_in_start > 0 ? h_in_start : 0;
  const int w_start = w_in_start > 0 ? w_in_start : 0;
  int weight_offset = 0;

#pragma unroll
  for (int h_in = h_in_start; h_in < h_in_end; h_in += dilate_height) {
#pragma unroll
    for (int w_in = w_in_start; w_in < w_in_end; w_in += dilate_width) {
      if (h_in >= h_start && h_in < h_end && w_in >= w_start && w_in < w_end) {
        int offset = ((batch * input_height + h_in) * input_width + w_in) *
226
                         input_channels +
227 228
                     c_in;
        T in_data = input_data[offset];
229
        const T* weight = filter_data + weight_offset * output_channels + c_out;
230
        if (fuse_relu_before_conv) {
231
          value += weight[0] * T(max(0.0f, double(in_data)));
232
        } else {
233
          value += weight[0] * in_data;
234
        }
Z
zlx 已提交
235
      }
236
      weight_offset++;
Z
zlx 已提交
237 238
    }
  }
239 240 241 242
  int index = batch * output_channels * output_height * output_width +
              h_out * output_width * output_channels + w_out * output_channels +
              c_out;
  output_data[index] = value;
Z
zlx 已提交
243
}
244

245
template <typename T, int c_filter, bool fuse_relu_before_conv>
246
__device__ __inline__ void KernelDepthwiseConvCFilterNCHW(
247
    ARG_DEFINE_KernelDepthwiseConv) {
248 249
  const int kWeightSize = c_filter * c_filter;
  T r_weight[kWeightSize];
250 251 252 253
  const int batch = blockIdx.y;
  const int c_out = blockIdx.x;
  const T* weight = filter_data + c_out * c_filter * c_filter;
  for (int i = 0; i < c_filter * c_filter; i++) r_weight[i] = weight[i];
254

255 256 257 258 259 260
  for (int w_out = threadIdx.x; w_out < output_width; w_out += blockDim.x) {
    for (int h_out = threadIdx.y; h_out < output_height; h_out += blockDim.y) {
      const int batch = blockIdx.y;
      const int c_out = blockIdx.x;

      const int c_in = c_out / filter_multiplier;
261
      T value(0);
262 263 264 265 266
      const int h_in_start = -padding_height + h_out * stride_height;
      const int w_in_start = -padding_width + w_out * stride_width;
      const int h_in_end = h_in_start + c_filter * dilate_height;
      const int w_in_end = w_in_start + c_filter * dilate_width;

267 268
      int in_offset =
          ((batch * input_channels + c_in) * input_height) * input_width;
269 270 271 272 273 274 275 276 277 278 279 280

      const int h_end = h_in_end < input_height ? h_in_end : input_height;
      const int w_end = w_in_end < input_width ? w_in_end : input_width;
      const int h_start = h_in_start > 0 ? h_in_start : 0;
      const int w_start = w_in_start > 0 ? w_in_start : 0;

      for (int h_in = h_in_start, h_f = 0; h_f < c_filter;
           h_in += dilate_height, h_f++) {
        for (int w_in = w_in_start, w_f = 0; w_f < c_filter;
             w_in += dilate_width, w_f++) {
          if (h_in >= 0 && h_in < input_height && w_in >= 0 &&
              w_in < input_width) {
281 282 283
            int offset = in_offset + h_in * input_width + w_in;
            if (fuse_relu_before_conv) {
              value += r_weight[h_f * c_filter + w_f] *
284
                       T(max(0.0f, double(input_data[offset])));
285
            } else {
286
              value += r_weight[h_f * c_filter + w_f] * input_data[offset];
287
            }
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
          }
        }
      }
      int index =
          ((batch * gridDim.x + c_out) * output_height + h_out) * output_width +
          w_out;
      output_data[index] = value;
    }
  }
}

template <typename T, int c_filter, bool fuse_relu_before_conv>
__device__ __inline__ void KernelDepthwiseConvCFilterNHWC(
    ARG_DEFINE_KernelDepthwiseConv) {
  const int batch = blockIdx.z;
  int h_out = blockIdx.x * dilate_height + blockIdx.y;
  if (h_out >= output_height) {
    return;
  }
  int in_offset = batch * input_height * input_width * input_channels;
  int out_offset =
      (batch * output_height + h_out) * output_width * output_channels;
  const int h_in_start = -padding_height + h_out * stride_height;
  const int wi_size = (output_width + dilate_width - 1) / dilate_width;
  const int kWeightSize = c_filter * c_filter;
  T r_weight[kWeightSize];

  for (int c_out = threadIdx.x; c_out < output_channels; c_out += blockDim.x) {
    for (int i = 0; i < c_filter * c_filter; i++) {
      const T* weight = filter_data + i * output_channels + c_out;
      r_weight[i] = weight[0];
    }
    const int c_in = c_out / filter_multiplier;
    for (int i = threadIdx.y; i < wi_size * dilate_width; i += blockDim.y) {
      int i_dw = i / wi_size;
      int i_wi = i - i_dw * wi_size;
      int w_out = i_wi * dilate_width + i_dw;
      if (w_out >= output_width) {
        continue;
      }
328
      T value(0);
329 330 331 332 333 334 335 336 337
      const int w_in_start = -padding_width + w_out * stride_width;
      for (int h_in = h_in_start, h_f = 0; h_f < c_filter;
           h_in += dilate_height, h_f++) {
        for (int w_in = w_in_start, w_f = 0; w_f < c_filter;
             w_in += dilate_width, w_f++) {
          if (h_in >= 0 && h_in < input_height && w_in >= 0 &&
              w_in < input_width) {
            int offset =
                in_offset + (h_in * input_width + w_in) * input_channels + c_in;
338 339
            if (fuse_relu_before_conv) {
              value += r_weight[h_f * c_filter + w_f] *
340
                       T(max(0.0, double(input_data[offset])));
341 342 343
            } else {
              value += r_weight[h_f * c_filter + w_f] * input_data[offset];
            }
344 345 346
          }
        }
      }
347
      int index = out_offset + w_out * output_channels + c_out;
348 349 350 351 352
      output_data[index] = value;
    }
  }
}

H
hong 已提交
353 354 355 356 357 358
template <typename T,
          int c_filter_multiplier,
          int c_stride,
          int c_filter,
          DataLayout data_layout,
          bool fuse_relu_before_conv>
359
__global__ void KernelDepthwiseConvSp(ARG_DEFINE_KernelDepthwiseConv) {
360 361 362 363 364 365 366 367 368
  int final_filter_multiplier = filter_multiplier;
  int h_stride = stride_height;
  int w_stride = stride_width;
  if (c_filter_multiplier != 0) {
    final_filter_multiplier = c_filter_multiplier;
    h_stride = c_stride;
    w_stride = c_stride;
  }
  if (c_filter == -1) {
369
    if (data_layout != DataLayout::kNHWC) {
H
hong 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
      KernelDepthwiseConvNCHW<T, fuse_relu_before_conv>(input_data,
                                                        filter_data,
                                                        batch_size,
                                                        output_channels,
                                                        output_height,
                                                        output_width,
                                                        input_channels,
                                                        input_height,
                                                        input_width,
                                                        final_filter_multiplier,
                                                        filter_height,
                                                        filter_width,
                                                        h_stride,
                                                        w_stride,
                                                        padding_height,
                                                        padding_width,
                                                        dilate_height,
                                                        dilate_width,
                                                        output_data);
389
    } else {
H
hong 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
      KernelDepthwiseConvNHWC<T, fuse_relu_before_conv>(input_data,
                                                        filter_data,
                                                        batch_size,
                                                        output_channels,
                                                        output_height,
                                                        output_width,
                                                        input_channels,
                                                        input_height,
                                                        input_width,
                                                        final_filter_multiplier,
                                                        filter_height,
                                                        filter_width,
                                                        h_stride,
                                                        w_stride,
                                                        padding_height,
                                                        padding_width,
                                                        dilate_height,
                                                        dilate_width,
                                                        output_data);
409 410
    }
  } else {
411 412
    if (data_layout != DataLayout::kNHWC) {
      KernelDepthwiseConvCFilterNCHW<T, c_filter, fuse_relu_before_conv>(
H
hong 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
          input_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
431 432 433
          output_data);
    } else {
      KernelDepthwiseConvCFilterNHWC<T, c_filter, fuse_relu_before_conv>(
H
hong 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
          input_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
452 453
          output_data);
    }
454
  }
455 456
}

Z
zlx 已提交
457
// CUDA kernel to compute the depthwise convolution backprop w.r.t input.
458
#define ARG_DEFINE_KernelDepthwiseConvInputGrad                                \
459 460 461 462 463
  const T *const input_data, const T *const output_grad_data,                  \
      const T *const filter_data, const int batch_size,                        \
      const int output_channels, const int output_height,                      \
      const int output_width, const int input_channels,                        \
      const int input_height, const int input_width,                           \
464 465 466 467
      const int filter_multiplier, const int filter_height,                    \
      const int filter_width, const int stride_height, const int stride_width, \
      const int padding_height, const int padding_width,                       \
      const int dilate_height, const int dilate_width,                         \
468
      T *const input_grad_data
469

470
template <typename T, bool fuse_relu_before_conv>
471
__device__ __inline__ void KernelDepthwiseConvInputGradNCHW(
472
    ARG_DEFINE_KernelDepthwiseConvInputGrad) {
473 474
  const int batch = blockIdx.y;
  const int c_in = blockIdx.x;
475 476 477 478 479 480 481 482 483 484
  for (int w_in = threadIdx.x; w_in < input_width; w_in += blockDim.x) {
    for (int h_in = threadIdx.y; h_in < input_height; h_in += blockDim.y) {
      const int c_out_start = c_in * filter_multiplier;
      int h_out_start =
          h_in - (filter_height - 1) * dilate_height + padding_height;
      int h_out_end = h_in + padding_height;
      int w_out_start =
          w_in - (filter_width - 1) * dilate_width + padding_width;
      int w_out_end = w_in + padding_width;

485
      T value(0);
486 487 488
      int index =
          ((batch * gridDim.x + c_in) * input_height + h_in) * input_width +
          w_in;
489

490
      if (fuse_relu_before_conv) {
491
        if (input_data[index] <= T(0)) {
492 493 494 495
          input_grad_data[index] = 0;
          continue;
        }
      }
496 497 498 499 500 501 502 503 504 505 506 507 508 509

      for (int c_out = c_out_start; c_out < c_out_start + filter_multiplier;
           c_out++) {
        int filter_offset = (c_out + 1) * filter_height * filter_width;
        for (int h_out = h_out_start; h_out <= h_out_end;
             h_out += dilate_height) {
          for (int w_out = w_out_start; w_out <= w_out_end;
               w_out += dilate_width) {
            filter_offset--;
            int s_h_out = h_out / stride_height;
            int s_w_out = w_out / stride_width;
            if (h_out % stride_height == 0 && w_out % stride_width == 0 &&
                s_h_out >= 0 && s_h_out < output_height && s_w_out >= 0 &&
                s_w_out < output_width) {
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
              int output_grad_offset =
                  ((batch * output_channels + c_out) * output_height +
                   s_h_out) *
                      output_width +
                  s_w_out;
              value += output_grad_data[output_grad_offset] *
                       filter_data[filter_offset];
            }
          }
        }
      }
      input_grad_data[index] = value;
    }
  }
}

template <typename T, bool fuse_relu_before_conv>
__device__ __inline__ void KernelDepthwiseConvInputGradNHWC(
    ARG_DEFINE_KernelDepthwiseConvInputGrad) {
  const int batch = blockIdx.z;
  int h_in = blockIdx.x * dilate_height + blockIdx.y;
  if (h_in >= input_height) {
    return;
  }

  for (int c_in = threadIdx.x; c_in < input_channels; c_in += blockDim.x) {
    for (int w_in = threadIdx.y; w_in < input_width; w_in += blockDim.y) {
      int h_out_start =
          h_in - (filter_height - 1) * dilate_height + padding_height;
      int w_out_start =
          w_in - (filter_width - 1) * dilate_width + padding_width;

542
      T value(0);
543 544 545 546
      int index = ((batch * input_height + h_in) * input_width + w_in) *
                      input_channels +
                  c_in;
      if (fuse_relu_before_conv) {
547
        if (input_data[index] <= T(0)) {
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
          input_grad_data[index] = 0;
          continue;
        }
      }

      for (int c_i = 0; c_i < filter_multiplier; c_i++) {
        int c_out = c_in * filter_multiplier + c_i;
        int weight_offset = filter_height * filter_width;
        for (int h_out = h_out_start, h_f = 0; h_f < filter_height;
             h_out += dilate_height, h_f++) {
          for (int w_out = w_out_start, w_f = 0; w_f < filter_width;
               w_out += dilate_width, w_f++) {
            weight_offset--;
            int s_h_out = h_out / stride_height;
            int s_w_out = w_out / stride_width;
            if (h_out % stride_height == 0 && w_out % stride_width == 0 &&
                s_h_out >= 0 && s_h_out < output_height && s_w_out >= 0 &&
                s_w_out < output_width) {
              int output_grad_offset =
                  ((batch * output_height + s_h_out) * output_width + s_w_out) *
                      output_channels +
                  c_out;
              int filter_offset = weight_offset * output_channels + c_out;
571 572 573 574
              value += output_grad_data[output_grad_offset] *
                       filter_data[filter_offset];
            }
          }
Z
zlx 已提交
575 576
        }
      }
577
      input_grad_data[index] = value;
Z
zlx 已提交
578 579 580 581
    }
  }
}

H
hong 已提交
582 583 584
template <typename T,
          int c_filter,
          int c_filter_multiplier,
585
          bool fuse_relu_before_conv>
586
__device__ __inline__ void KernelDepthwiseConvInputGradCFilterNCHW(
587
    ARG_DEFINE_KernelDepthwiseConvInputGrad) {
588 589
  const int kWeightSize = c_filter * c_filter * c_filter_multiplier + 1;
  T r_weight[kWeightSize];
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
  const int batch = blockIdx.y;
  const int c_in = blockIdx.x;

  for (int c_i = 0; c_i < filter_multiplier; c_i++) {
    int c_out = c_in * filter_multiplier + c_i;
    const T* weight = filter_data + c_out * c_filter * c_filter;
    for (int i = 0; i < c_filter * c_filter; i++)
      r_weight[i + c_i * c_filter * c_filter] =
          weight[c_filter * c_filter - i - 1];
  }

  for (int w_in = threadIdx.x; w_in < input_width; w_in += blockDim.x) {
    for (int h_in = threadIdx.y; h_in < input_height; h_in += blockDim.y) {
      int h_out_start = h_in - (c_filter - 1) * dilate_height + padding_height;
      int w_out_start = w_in - (c_filter - 1) * dilate_width + padding_width;

606
      T value(0);
607 608 609
      int index =
          ((batch * gridDim.x + c_in) * input_height + h_in) * input_width +
          w_in;
610
      if (fuse_relu_before_conv) {
611
        if (input_data[index] <= T(0)) {
612 613 614 615
          input_grad_data[index] = 0;
          continue;
        }
      }
616 617 618 619 620 621 622 623 624 625 626 627

      for (int c_i = 0; c_i < filter_multiplier; c_i++) {
        int c_out = c_in * filter_multiplier + c_i;
        for (int h_out = h_out_start, h_f = 0; h_f < c_filter;
             h_out += dilate_height, h_f++) {
          for (int w_out = w_out_start, w_f = 0; w_f < c_filter;
               w_out += dilate_width, w_f++) {
            int s_h_out = h_out / stride_height;
            int s_w_out = w_out / stride_width;
            if (h_out % stride_height == 0 && w_out % stride_width == 0 &&
                s_h_out >= 0 && s_h_out < output_height && s_w_out >= 0 &&
                s_w_out < output_width) {
628 629 630 631 632
              int output_grad_offset =
                  ((batch * output_channels + c_out) * output_height +
                   s_h_out) *
                      output_width +
                  s_w_out;
633 634 635 636 637 638 639 640 641 642 643 644
              value +=
                  output_grad_data[output_grad_offset] *
                  r_weight[h_f * c_filter + w_f + c_i * c_filter * c_filter];
            }
          }
        }
      }
      input_grad_data[index] = value;
    }
  }
}

H
hong 已提交
645 646 647
template <typename T,
          int c_filter,
          int c_filter_multiplier,
648
          bool fuse_relu_before_conv>
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
__device__ __inline__ void KernelDepthwiseConvInputGradCFilterNHWC(
    ARG_DEFINE_KernelDepthwiseConvInputGrad) {
  int h_in = blockIdx.x * dilate_height + blockIdx.y;
  if (h_in >= input_height) {
    return;
  }
  const int kWeightSize = c_filter * c_filter * c_filter_multiplier + 1;
  T r_weight[kWeightSize];
  const int batch = blockIdx.z;
  const int wi_size = (input_width + dilate_width - 1) / dilate_width;
  const int h_out_start =
      h_in - (c_filter - 1) * dilate_height + padding_height;

  for (int c_in = threadIdx.x; c_in < input_channels; c_in += blockDim.x) {
    for (int c_i = 0; c_i < c_filter_multiplier; c_i++) {
      int c_out = c_in * c_filter_multiplier + c_i;
      for (int i = 0; i < c_filter * c_filter; i++)
        r_weight[i + c_i * c_filter * c_filter] =
            filter_data[(c_filter * c_filter - i - 1) * output_channels +
                        c_out];
    }
    for (int i = threadIdx.y; i < wi_size * dilate_width; i += blockDim.y) {
      int i_dw = i / wi_size;
      int i_wi = i - i_dw * wi_size;
      int w_in = i_wi * dilate_width + i_dw;
      if (w_in >= input_width) {
        continue;
      }
      int w_out_start = w_in - (c_filter - 1) * dilate_width + padding_width;

679
      T value(0);
680 681 682 683
      int index = ((batch * input_height + h_in) * input_width + w_in) *
                      input_channels +
                  c_in;
      if (fuse_relu_before_conv) {
684
        if (input_data[index] <= T(0)) {
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
          input_grad_data[index] = 0;
          continue;
        }
      }

      for (int c_i = 0; c_i < c_filter_multiplier; c_i++) {
        int c_out = c_in * c_filter_multiplier + c_i;
        for (int h_out = h_out_start, h_f = 0; h_f < c_filter;
             h_out += dilate_height, h_f++) {
          for (int w_out = w_out_start, w_f = 0; w_f < c_filter;
               w_out += dilate_width, w_f++) {
            int s_h_out = h_out / stride_height;
            int s_w_out = w_out / stride_width;
            if (h_out % stride_height == 0 && w_out % stride_width == 0 &&
                s_h_out >= 0 && s_h_out < output_height && s_w_out >= 0 &&
                s_w_out < output_width) {
              int output_grad_offset =
                  ((batch * output_height + s_h_out) * output_width + s_w_out) *
                      output_channels +
                  c_out;
              value +=
                  output_grad_data[output_grad_offset] *
                  r_weight[h_f * c_filter + w_f + c_i * c_filter * c_filter];
            }
          }
        }
      }
      input_grad_data[index] = value;
    }
  }
}

H
hong 已提交
717 718 719 720 721 722
template <typename T,
          int c_filter_multiplier,
          int c_stride,
          int c_filter,
          DataLayout data_layout,
          bool fuse_relu_before_conv>
723
__global__ void KernelDepthwiseConvInputGradSp(
724
    ARG_DEFINE_KernelDepthwiseConvInputGrad) {
725 726 727 728 729 730 731 732 733 734 735 736
  int final_filter_multiplier = filter_multiplier;
  int h_stride = stride_height;
  int w_stride = stride_width;
  if (c_filter_multiplier != 0) {
    final_filter_multiplier = c_filter_multiplier;
    h_stride = c_stride;
    w_stride = c_stride;
  }

  if (c_filter_multiplier == 0 || c_filter == -1) {
    if (data_layout != DataLayout::kNHWC) {
      KernelDepthwiseConvInputGradNCHW<T, fuse_relu_before_conv>(
H
hong 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
          input_data,
          output_grad_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
          input_grad_data);
757 758
    } else {
      KernelDepthwiseConvInputGradNHWC<T, fuse_relu_before_conv>(
H
hong 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
          input_data,
          output_grad_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
          input_grad_data);
779 780 781
    }
  } else {
    if (data_layout != DataLayout::kNHWC) {
H
hong 已提交
782 783 784
      KernelDepthwiseConvInputGradCFilterNCHW<T,
                                              c_filter,
                                              c_filter_multiplier,
785
                                              fuse_relu_before_conv>(
H
hong 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
          input_data,
          output_grad_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          c_filter_multiplier,
          filter_height,
          filter_width,
          c_stride,
          c_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
          input_grad_data);
806
    } else {
H
hong 已提交
807 808 809
      KernelDepthwiseConvInputGradCFilterNHWC<T,
                                              c_filter,
                                              c_filter_multiplier,
810
                                              fuse_relu_before_conv>(
H
hong 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
          input_data,
          output_grad_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          c_filter_multiplier,
          filter_height,
          filter_width,
          c_stride,
          c_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
          input_grad_data);
831 832
    }
  }
833 834
}

835
// Cuda kernel to compute the depthwise convolution backprop w.r.t. filter.
836
template <typename T, bool fuse_relu_before_conv>
837
__device__ __inline__ void KernelDepthwiseConvFilterGradNCHW(
H
hong 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
    const T* output_grad_data,
    const T* input_data,
    const int num,
    const int output_channels,
    const int output_height,
    const int output_width,
    const int input_channels,
    const int input_height,
    const int input_width,
    const int filter_multiplier,
    const int filter_height,
    const int filter_width,
    const int stride_height,
    const int stride_width,
    const int padding_height,
    const int padding_width,
    const int dilate_height,
    const int dilate_width,
    T* filter_grad_data) {
857
  T s(0);
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
  int gbid = ((blockIdx.z * gridDim.y) + blockIdx.y) * gridDim.x + blockIdx.x;

  for (int image_w = threadIdx.x; image_w < output_width;
       image_w += blockDim.x) {
    for (int bid = 0; bid < num; bid++) {
      for (int image_h = threadIdx.y; image_h < output_height;
           image_h += blockDim.y) {
        int kernel_id = blockIdx.z;
        int kernel_h = blockIdx.y * dilate_height - padding_height;
        int kernel_w = blockIdx.x * dilate_width - padding_width;

        int image_hk = image_h * stride_height + kernel_h;
        int image_wk = image_w * stride_width + kernel_w;
        if (image_hk < 0 || image_hk >= input_height) continue;
        if (image_wk < 0 || image_wk >= input_width) continue;
#define gaid(N, C, H, W) \
  ((((N)*gridDim.z + (C)) * output_height + (H)) * output_width + (W))
875 876 877 878 879 880 881 882
        int input_id = ((bid * (gridDim.z / filter_multiplier) +
                         kernel_id / filter_multiplier) *
                            input_height +
                        image_hk) *
                           input_width +
                       image_wk;
        if (fuse_relu_before_conv) {
          s += output_grad_data[gaid(bid, kernel_id, image_h, image_w)] *
883
               T(max(0.0f, double(input_data[input_id])));
884
        } else {
885 886 887 888 889 890 891
          s += output_grad_data[gaid(bid, kernel_id, image_h, image_w)] *
               input_data[input_id];
        }
#undef gaid
      }
    }
  }
W
wangguanzhong 已提交
892 893 894

  T val = BlockReduceSum(s);
  platform::CudaAtomicAdd(&filter_grad_data[gbid], val);
895 896 897 898
}

template <typename T, bool fuse_relu_before_conv>
__device__ __inline__ void KernelDepthwiseConvFilterGradNHWC(
H
hong 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
    const T* output_grad_data,
    const T* input_data,
    const int num,
    const int output_channels,
    const int output_height,
    const int output_width,
    const int input_channels,
    const int input_height,
    const int input_width,
    const int filter_multiplier,
    const int filter_height,
    const int filter_width,
    const int stride_height,
    const int stride_width,
    const int padding_height,
    const int padding_width,
    const int dilate_height,
    const int dilate_width,
    T* filter_grad_data) {
918 919 920 921 922 923
  int bid = blockIdx.z;
  int image_h = blockIdx.y;
  int kernel_iw = blockIdx.x % filter_width;
  int kernel_ih = blockIdx.x / filter_width;
  for (int kernel_id = threadIdx.x; kernel_id < output_channels;
       kernel_id += blockDim.x) {
924
    T s(0);
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
    int gbid =
        ((kernel_id * filter_height) + kernel_ih) * filter_width + kernel_iw;
    for (int image_w = threadIdx.y; image_w < output_width;
         image_w += blockDim.y) {
      int kernel_h = kernel_ih * dilate_height - padding_height;
      int kernel_w = kernel_iw * dilate_width - padding_width;

      int image_hk = image_h * stride_height + kernel_h;
      int image_wk = image_w * stride_width + kernel_w;
      if (image_hk < 0 || image_hk >= input_height) continue;
      if (image_wk < 0 || image_wk >= input_width) continue;
#define gaid(N, H, W, C) \
  ((((N)*output_height + (H)) * output_width + (W)) * output_channels + (C))
      int input_id =
          ((bid * input_height + image_hk) * input_width + image_wk) *
              input_channels +
          kernel_id / filter_multiplier;
      if (fuse_relu_before_conv) {
        s += output_grad_data[gaid(bid, image_h, image_w, kernel_id)] *
944
             T(max(0.0f, double(input_data[input_id])));
945 946 947 948 949 950 951 952 953 954 955 956
      } else {
        s += output_grad_data[gaid(bid, image_h, image_w, kernel_id)] *
             input_data[input_id];
      }
#undef gaid
    }
    platform::CudaAtomicAdd(&filter_grad_data[gbid], s);
  }
}

template <typename T, int c_filter, bool fuse_relu_before_conv>
__device__ __inline__ void KernelDepthwiseConvFilterGradCFilterNHWC(
H
hong 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
    const T* output_grad_data,
    const T* input_data,
    const int num,
    const int output_channels,
    const int output_height,
    const int output_width,
    const int input_channels,
    const int input_height,
    const int input_width,
    const int filter_multiplier,
    const int filter_height,
    const int filter_width,
    const int stride_height,
    const int stride_width,
    const int padding_height,
    const int padding_width,
    const int dilate_height,
    const int dilate_width,
    T* filter_grad_data) {
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
  const int bid = blockIdx.z;
  int image_h = blockIdx.x * dilate_height + blockIdx.y;
  if (image_h >= output_height) {
    return;
  }
  const int kWeightSize = c_filter * c_filter;
  T r_weight[kWeightSize];
  const int wi_size = (output_width + dilate_width - 1) / dilate_width;

  for (int kernel_id = threadIdx.x; kernel_id < output_channels;
       kernel_id += blockDim.x) {
    for (int i = 0; i < c_filter * c_filter; ++i) {
      r_weight[i] = 0;
    }
    for (int i = threadIdx.y; i < wi_size * dilate_width; i += blockDim.y) {
      int i_dw = i / wi_size;
      int i_wi = i - i_dw * wi_size;
      int image_w = i_wi * dilate_width + i_dw;
      if (image_w >= output_width) {
        continue;
      }
      for (int kernel_ih = 0; kernel_ih < c_filter; ++kernel_ih) {
        for (int kernel_iw = 0; kernel_iw < c_filter; ++kernel_iw) {
          int kernel_h = kernel_ih * dilate_height - padding_height;
          int kernel_w = kernel_iw * dilate_width - padding_width;
          int image_hk = image_h * stride_height + kernel_h;
          int image_wk = image_w * stride_width + kernel_w;
          if (image_hk < 0 || image_hk >= input_height) continue;
          if (image_wk < 0 || image_wk >= input_width) continue;
          int input_id =
1006
              ((bid * input_height + image_hk) * input_width + image_wk) *
1007
                  input_channels +
1008
              kernel_id / filter_multiplier;
1009 1010 1011 1012
          int output_id =
              ((bid * output_height + image_h) * output_width + image_w) *
                  output_channels +
              kernel_id;
1013
          T s(0);
1014
          if (fuse_relu_before_conv) {
1015 1016
            s = output_grad_data[output_id] *
                T(max(0.0f, double(input_data[input_id])));
1017
          } else {
1018
            s = output_grad_data[output_id] * input_data[input_id];
1019
          }
1020
          r_weight[kernel_ih * c_filter + kernel_iw] += s;
1021
        }
1022
      }
Z
zlx 已提交
1023
    }
1024 1025 1026 1027
    for (int i = 0; i < c_filter * c_filter; ++i) {
      T* weight = filter_grad_data + i * output_channels + kernel_id;
      platform::CudaAtomicAdd(&weight[0], r_weight[i]);
    }
Z
zlx 已提交
1028
  }
1029 1030
}

H
hong 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
template <typename T,
          int c_filter_multiplier,
          int c_stride,
          int c_filter,
          DataLayout data_layout,
          bool fuse_relu_before_conv>
__global__ void KernelDepthwiseConvFilterGradSp(const T* output_grad_data,
                                                const T* input_data,
                                                const int num,
                                                const int output_channels,
                                                const int output_height,
                                                const int output_width,
                                                const int input_channels,
                                                const int input_height,
                                                const int input_width,
                                                const int filter_multiplier,
                                                const int filter_height,
                                                const int filter_width,
                                                const int stride_height,
                                                const int stride_width,
                                                const int padding_height,
                                                const int padding_width,
                                                const int dilate_height,
                                                const int dilate_width,
                                                T* filter_grad_data) {
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
  int final_filter_multiplier = filter_multiplier;
  int h_stride = stride_height;
  int w_stride = stride_width;
  if (c_filter_multiplier != 0) {
    final_filter_multiplier = c_filter_multiplier;
    h_stride = c_stride;
    w_stride = c_stride;
  }
  if (c_filter_multiplier == 0 || c_filter == -1) {
    if (data_layout != DataLayout::kNHWC) {
      KernelDepthwiseConvFilterGradNCHW<T, fuse_relu_before_conv>(
H
hong 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
          output_grad_data,
          input_data,
          num,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
1085 1086 1087
          filter_grad_data);
    } else {
      KernelDepthwiseConvFilterGradNHWC<T, fuse_relu_before_conv>(
H
hong 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
          output_grad_data,
          input_data,
          num,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
1106 1107 1108 1109 1110
          filter_grad_data);
    }
  } else {
    if (data_layout != DataLayout::kNHWC) {
      KernelDepthwiseConvFilterGradNCHW<T, fuse_relu_before_conv>(
H
hong 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
          output_grad_data,
          input_data,
          num,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
1129 1130
          filter_grad_data);
    } else {
H
hong 已提交
1131 1132
      KernelDepthwiseConvFilterGradCFilterNHWC<T,
                                               c_filter,
1133
                                               fuse_relu_before_conv>(
H
hong 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
          output_grad_data,
          input_data,
          num,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
1152 1153 1154
          filter_grad_data);
    }
  }
Z
zlx 已提交
1155 1156 1157 1158 1159 1160 1161
}

/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
1162
template <class T, bool fuse_relu_before_conv>
H
hong 已提交
1163
class DepthwiseConvFunctor<phi::GPUContext, T, fuse_relu_before_conv> {
Z
zlx 已提交
1164
 public:
H
hong 已提交
1165
  void operator()(const phi::GPUContext& context,
Z
zlx 已提交
1166
                  const framework::Tensor& input,
X
xzl 已提交
1167 1168
                  const framework::Tensor& filter,
                  const std::vector<int>& strides,
1169
                  const std::vector<int>& paddings,
H
hong 已提交
1170 1171
                  const std::vector<int>& dilations,
                  framework::Tensor* output,
1172
                  const DataLayout data_layout = DataLayout::kNCHW) {
Z
zlx 已提交
1173
    const int batch_size = input.dims()[0];
1174
    const int input_channels =
1175
        (data_layout != DataLayout::kNHWC ? input.dims()[1] : input.dims()[3]);
1176
    const int input_height =
1177
        (data_layout != DataLayout::kNHWC ? input.dims()[2] : input.dims()[1]);
1178
    const int input_width =
1179
        (data_layout != DataLayout::kNHWC ? input.dims()[3] : input.dims()[2]);
1180
    const int output_channels =
1181
        (data_layout != DataLayout::kNHWC ? output->dims()[1]
1182 1183
                                          : output->dims()[3]);
    const int output_height =
1184
        (data_layout != DataLayout::kNHWC ? output->dims()[2]
1185 1186
                                          : output->dims()[1]);
    const int output_width =
1187
        (data_layout != DataLayout::kNHWC ? output->dims()[3]
1188
                                          : output->dims()[2]);
1189 1190
    const int ksize_height = filter.dims()[2];
    const int ksize_width = filter.dims()[3];
Z
zlx 已提交
1191 1192 1193 1194
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
1195 1196
    const int dilate_height = dilations[0];
    const int dilate_width = dilations[1];
Z
zlx 已提交
1197 1198 1199 1200 1201

    const T* input_data = input.data<T>();
    const T* filter_data = filter.data<T>();
    T* output_data = output->mutable_data<T>(context.GetPlace());

1202 1203
    framework::Tensor filter_hwc;
    if (data_layout == DataLayout::kNHWC) {
H
hong 已提交
1204 1205 1206 1207
      framework::DDim filter_hwc_dims({filter.dims()[2],
                                       filter.dims()[3],
                                       filter.dims()[0],
                                       filter.dims()[1]});
1208 1209 1210
      filter_hwc.Resize(filter_hwc_dims);
      filter_hwc.mutable_data<T>(context.GetPlace());
      std::vector<int> perm_axis({2, 3, 0, 1});
H
hong 已提交
1211
      phi::funcs::TransposeNormal<phi::GPUContext, T> trans;
1212 1213 1214 1215
      trans(context, filter, &filter_hwc, perm_axis);
      filter_data = filter_hwc.data<T>();
    }

1216
    int thread = 512;
1217 1218 1219
    int blocks;
    dim3 threads;
    dim3 grid;
W
wangguanzhong 已提交
1220

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    if (data_layout != DataLayout::kNHWC) {
      if (output_width > 1024 && output_width <= 2048)
        thread = (output_width - 1) / 2 + 1;
      else if (output_width > 512 && output_width <= 1024)
        thread = output_width;
#ifdef __HIPCC__
      thread = std::min(thread, 256);
#endif
      blocks = std::min(std::max(thread / output_width, 1), output_height);
      threads = dim3(std::min(output_width, thread), blocks, 1);
      grid = dim3(output_channels, batch_size, 1);
    } else {
1233
#ifdef __HIPCC__
1234
      thread = std::min(thread, 256);
1235
#endif
1236 1237 1238 1239 1240
      blocks = std::min(
          std::max(thread / output_channels, 1),
          ((output_width + dilate_width - 1) / dilate_width) * dilate_width);
      threads = dim3(std::min(output_channels, thread), blocks, 1);
      grid = dim3((output_height + dilate_height - 1) / dilate_height,
H
hong 已提交
1241 1242
                  dilate_height,
                  batch_size);
1243
    }
1244
    int filter_multiplier = output_channels / input_channels;
1245 1246
    int nums_output =
        batch_size * output_channels * output_height * output_width;
1247 1248 1249
#ifdef __HIPCC__
    int block_size = 256;
#else
1250
    int block_size = 512;
1251
#endif
1252
    int grid_size = (nums_output + block_size - 1) / block_size;
1253

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
#define check_case(c_filter_multiplier, c_stride, c_filter)             \
  if (c_filter_multiplier == 0 ||                                       \
      filter_multiplier == c_filter_multiplier &&                       \
          stride_height == stride_width && stride_height == c_stride && \
          (ksize_height == ksize_width && ksize_height == c_filter ||   \
           c_filter == -1)) {                                           \
    if (c_filter == -1) {                                               \
      threads.x = block_size;                                           \
      grid.x = grid_size;                                               \
      threads.y = threads.z = grid.y = grid.z = 1;                      \
    }                                                                   \
    if (data_layout != DataLayout::kNHWC) {                             \
      KernelDepthwiseConvSp<T,                                          \
                            c_filter_multiplier,                        \
                            c_stride,                                   \
                            c_filter,                                   \
                            DataLayout::kNCHW,                          \
                            fuse_relu_before_conv>                      \
          <<<grid, threads, 0, context.stream()>>>(input_data,          \
                                                   filter_data,         \
                                                   batch_size,          \
                                                   output_channels,     \
                                                   output_height,       \
                                                   output_width,        \
                                                   input_channels,      \
                                                   input_height,        \
                                                   input_width,         \
                                                   filter_multiplier,   \
                                                   ksize_height,        \
                                                   ksize_width,         \
                                                   stride_height,       \
                                                   stride_width,        \
                                                   padding_height,      \
                                                   padding_width,       \
                                                   dilate_height,       \
                                                   dilate_width,        \
                                                   output_data);        \
    } else {                                                            \
      KernelDepthwiseConvSp<T,                                          \
                            c_filter_multiplier,                        \
                            c_stride,                                   \
                            c_filter,                                   \
                            DataLayout::kNHWC,                          \
                            fuse_relu_before_conv>                      \
          <<<grid, threads, 0, context.stream()>>>(input_data,          \
                                                   filter_data,         \
                                                   batch_size,          \
                                                   output_channels,     \
                                                   output_height,       \
                                                   output_width,        \
                                                   input_channels,      \
                                                   input_height,        \
                                                   input_width,         \
                                                   filter_multiplier,   \
                                                   ksize_height,        \
                                                   ksize_width,         \
                                                   stride_height,       \
                                                   stride_width,        \
                                                   padding_height,      \
                                                   padding_width,       \
                                                   dilate_height,       \
                                                   dilate_width,        \
                                                   output_data);        \
    }                                                                   \
    return;                                                             \
1319
  }
1320 1321 1322 1323 1324 1325
    check_case(1, 1, 3);
    check_case(1, 1, 5);
    check_case(1, 1, -1);
    check_case(1, 2, 3);
    check_case(1, 2, 5);
    check_case(1, 2, -1);
1326 1327 1328 1329 1330 1331
    check_case(2, 1, 3);
    check_case(2, 1, 5);
    check_case(2, 1, -1);
    check_case(2, 2, 3);
    check_case(2, 2, 5);
    check_case(2, 2, -1);
1332 1333 1334
    check_case(0, 0, -1);
// NOTE(liangdun): 0,0 for other case
// add other case if needed, e.g. check_case(2^n,1)
1335
#undef check_case
Z
zlx 已提交
1336 1337 1338
  }
};

1339
template <typename T, bool fuse_relu_before_conv>
H
hong 已提交
1340
class DepthwiseConvInputGradFunctor<phi::GPUContext, T, fuse_relu_before_conv> {
Z
zlx 已提交
1341
 public:
H
hong 已提交
1342
  void operator()(const phi::GPUContext& context,
Z
zlx 已提交
1343
                  const framework::Tensor& input,
1344 1345
                  const framework::Tensor& filter,
                  const framework::Tensor& output_grad,
X
xzl 已提交
1346 1347
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
1348
                  const std::vector<int>& dilations,
1349 1350
                  framework::Tensor* input_grad,
                  const DataLayout data_layout = DataLayout::kNCHW) {
Z
zlx 已提交
1351
    const int batch_size = input.dims()[0];
1352
    const int input_channels =
1353
        (data_layout != DataLayout::kNHWC ? input.dims()[1] : input.dims()[3]);
1354
    const int input_height =
1355
        (data_layout != DataLayout::kNHWC ? input.dims()[2] : input.dims()[1]);
1356
    const int input_width =
1357
        (data_layout != DataLayout::kNHWC ? input.dims()[3] : input.dims()[2]);
1358
    const int output_channels =
1359
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[1]
1360 1361
                                          : output_grad.dims()[3]);
    const int output_height =
1362
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[2]
1363 1364
                                          : output_grad.dims()[1]);
    const int output_width =
1365
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[3]
1366
                                          : output_grad.dims()[2]);
1367 1368 1369
    const int ksize_height = filter.dims()[2];
    const int ksize_width = filter.dims()[3];
    const int stride_height = strides[0];
Z
zlx 已提交
1370 1371 1372
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
1373 1374
    const int dilate_height = dilations[0];
    const int dilate_width = dilations[1];
Z
zlx 已提交
1375

1376
    const T* input_data = input.data<T>();
1377
    const T* filter_data = filter.data<T>();
Z
zlx 已提交
1378 1379 1380
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());

1381 1382
    framework::Tensor filter_hwc;
    if (data_layout == DataLayout::kNHWC) {
H
hong 已提交
1383 1384 1385 1386
      framework::DDim filter_hwc_dims({filter.dims()[2],
                                       filter.dims()[3],
                                       filter.dims()[0],
                                       filter.dims()[1]});
1387 1388 1389
      filter_hwc.Resize(filter_hwc_dims);
      filter_hwc.mutable_data<T>(context.GetPlace());
      std::vector<int> perm_axis({2, 3, 0, 1});
H
hong 已提交
1390
      phi::funcs::TransposeNormal<phi::GPUContext, T> trans;
1391 1392 1393 1394
      trans(context, filter, &filter_hwc, perm_axis);
      filter_data = filter_hwc.data<T>();
    }

1395
    int thread = 512;
1396 1397 1398
    int blocks;
    dim3 threads;
    dim3 grid;
W
wangguanzhong 已提交
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
    if (data_layout != DataLayout::kNHWC) {
      if (input_width > 1024 && input_width <= 2048) {
        thread = (input_width - 1) / 2 + 1;
      } else if (input_width > 512 && input_width <= 1024) {
        thread = input_width;
      }
      blocks = std::min(std::max(thread / input_width, 1), input_height);
      threads = dim3(std::min(input_width, thread), blocks, 1);
      grid = dim3(input_channels, batch_size, 1);
    } else {
      blocks = std::min(
          std::max(thread / input_channels, 1),
          ((input_width + dilate_width - 1) / dilate_width) * dilate_width);
      threads = dim3(std::min(input_channels, thread), blocks, 1);
      grid = dim3((input_height + dilate_height - 1) / dilate_height,
H
hong 已提交
1415 1416
                  dilate_height,
                  batch_size);
1417
    }
1418 1419
    int filter_multiplier = output_channels / input_channels;

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
#define check_case(c_filter_multiplier, c_stride, c_filter)             \
  if (c_filter_multiplier == 0 ||                                       \
      filter_multiplier == c_filter_multiplier &&                       \
          stride_height == stride_width && stride_height == c_stride && \
          (ksize_height == ksize_width && ksize_height == c_filter ||   \
           c_filter == -1)) {                                           \
    if (data_layout != DataLayout::kNHWC) {                             \
      KernelDepthwiseConvInputGradSp<T,                                 \
                                     c_filter_multiplier,               \
                                     c_stride,                          \
                                     c_filter,                          \
                                     DataLayout::kNCHW,                 \
                                     fuse_relu_before_conv>             \
          <<<grid, threads, 0, context.stream()>>>(input_data,          \
                                                   output_grad_data,    \
                                                   filter_data,         \
                                                   batch_size,          \
                                                   output_channels,     \
                                                   output_height,       \
                                                   output_width,        \
                                                   input_channels,      \
                                                   input_height,        \
                                                   input_width,         \
                                                   filter_multiplier,   \
                                                   ksize_height,        \
                                                   ksize_width,         \
                                                   stride_height,       \
                                                   stride_width,        \
                                                   padding_height,      \
                                                   padding_width,       \
                                                   dilate_height,       \
                                                   dilate_width,        \
                                                   input_grad_data);    \
    } else {                                                            \
      KernelDepthwiseConvInputGradSp<T,                                 \
                                     c_filter_multiplier,               \
                                     c_stride,                          \
                                     c_filter,                          \
                                     DataLayout::kNHWC,                 \
                                     fuse_relu_before_conv>             \
          <<<grid, threads, 0, context.stream()>>>(input_data,          \
                                                   output_grad_data,    \
                                                   filter_data,         \
                                                   batch_size,          \
                                                   output_channels,     \
                                                   output_height,       \
                                                   output_width,        \
                                                   input_channels,      \
                                                   input_height,        \
                                                   input_width,         \
                                                   filter_multiplier,   \
                                                   ksize_height,        \
                                                   ksize_width,         \
                                                   stride_height,       \
                                                   stride_width,        \
                                                   padding_height,      \
                                                   padding_width,       \
                                                   dilate_height,       \
                                                   dilate_width,        \
                                                   input_grad_data);    \
    }                                                                   \
    return;                                                             \
1482
  }
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
    check_case(1, 1, 3);
    check_case(1, 1, 5);
    check_case(1, 1, -1);
    check_case(1, 2, 3);
    check_case(1, 2, 5);
    check_case(1, 2, -1);
    check_case(2, 1, 3);
    check_case(2, 1, 5);
    check_case(2, 1, -1);
    check_case(2, 2, 3);
    check_case(2, 2, 5);
    check_case(2, 2, -1);
    check_case(0, 0, -1);
// NOTE(liangdun): 0,0 for other case
// add other case if needed, e.g. check_case(2^n,1)
1498
#undef check_case
Z
zlx 已提交
1499 1500 1501
  }
};

1502
template <typename T, bool fuse_relu_before_conv>
H
hong 已提交
1503 1504
class DepthwiseConvFilterGradFunctor<phi::GPUContext,
                                     T,
1505
                                     fuse_relu_before_conv> {
Z
zlx 已提交
1506
 public:
H
hong 已提交
1507
  void operator()(const phi::GPUContext& context,
Z
zlx 已提交
1508
                  const framework::Tensor& input,
1509
                  const framework::Tensor& output_grad,
X
xzl 已提交
1510 1511
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
1512
                  const std::vector<int>& dilations,
1513 1514
                  framework::Tensor* filter_grad,
                  const DataLayout data_layout = DataLayout::kNCHW) {
Z
zlx 已提交
1515
    const int batch_size = input.dims()[0];
1516
    const int input_channels =
1517
        (data_layout != DataLayout::kNHWC ? input.dims()[1] : input.dims()[3]);
1518
    const int input_height =
1519
        (data_layout != DataLayout::kNHWC ? input.dims()[2] : input.dims()[1]);
1520
    const int input_width =
1521
        (data_layout != DataLayout::kNHWC ? input.dims()[3] : input.dims()[2]);
1522
    const int output_channels =
1523
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[1]
1524 1525
                                          : output_grad.dims()[3]);
    const int output_height =
1526
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[2]
1527 1528
                                          : output_grad.dims()[1]);
    const int output_width =
1529
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[3]
1530
                                          : output_grad.dims()[2]);
1531 1532
    const int ksize_height = filter_grad->dims()[2];
    const int ksize_width = filter_grad->dims()[3];
Z
zlx 已提交
1533 1534 1535 1536
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
1537 1538
    const int dilate_height = dilations[0];
    const int dilate_width = dilations[1];
Z
zlx 已提交
1539 1540 1541

    const T* input_data = input.data<T>();
    const T* output_grad_data = output_grad.data<T>();
1542
    T* filter_grad_data = filter_grad->mutable_data<T>(context.GetPlace());
Z
zlx 已提交
1543

1544
    int block_size = 512;
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
    int blocks;
    dim3 threads;
    dim3 grid;
    if (data_layout != DataLayout::kNHWC) {
      if (output_width > 1024 && output_width <= 2048) {
        block_size = (output_width - 1) / 2 + 1;
      } else if (output_width > 512 && output_width <= 1024) {
        block_size = output_width;
      }
      blocks = std::min(std::max(block_size / output_width, 1), output_height);
      grid = dim3(ksize_width, ksize_height, output_channels);
      threads = dim3(std::min(output_width, block_size), blocks, 1);
    } else {
      blocks = std::min(
          std::max(block_size / output_channels, 1),
          ((output_width + dilate_width - 1) / dilate_width) * dilate_width);
      grid = dim3((output_height + dilate_height - 1) / dilate_height,
H
hong 已提交
1562 1563
                  dilate_height,
                  batch_size);
1564 1565
      threads = dim3(std::min(output_channels, block_size), blocks, 1);
    }
1566 1567
    int filter_multiplier = output_channels / input_channels;

1568 1569 1570 1571 1572 1573 1574
#define check_case(c_filter_multiplier, c_stride, c_filter)                    \
  if (c_filter_multiplier == 0 ||                                              \
      filter_multiplier == c_filter_multiplier &&                              \
          stride_height == stride_width && stride_height == c_stride &&        \
          (ksize_height == ksize_width && ksize_height == c_filter ||          \
           c_filter == -1)) {                                                  \
    if (data_layout != DataLayout::kNHWC) {                                    \
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
      KernelDepthwiseConvFilterGradSp<T,                                       \
                                      c_filter_multiplier,                     \
                                      c_stride,                                \
                                      c_filter,                                \
                                      DataLayout::kNCHW,                       \
                                      fuse_relu_before_conv>                   \
          <<<grid, threads, 0, context.stream()>>>(output_grad_data,           \
                                                   input_data,                 \
                                                   batch_size,                 \
                                                   output_channels,            \
                                                   output_height,              \
                                                   output_width,               \
                                                   input_channels,             \
                                                   input_height,               \
                                                   input_width,                \
                                                   filter_multiplier,          \
                                                   ksize_height,               \
                                                   ksize_width,                \
                                                   stride_height,              \
                                                   stride_width,               \
                                                   padding_height,             \
                                                   padding_width,              \
                                                   dilate_height,              \
                                                   dilate_width,               \
                                                   filter_grad_data);          \
1600 1601 1602
    } else {                                                                   \
      framework::Tensor filter_grad_hwc;                                       \
      if (c_filter != -1) {                                                    \
H
hong 已提交
1603 1604 1605 1606
        framework::DDim filter_grad_hwc_dims({filter_grad->dims()[2],          \
                                              filter_grad->dims()[3],          \
                                              filter_grad->dims()[0],          \
                                              filter_grad->dims()[1]});        \
1607 1608
        filter_grad_hwc.Resize(filter_grad_hwc_dims);                          \
        filter_grad_hwc.mutable_data<T>(context.GetPlace());                   \
H
hong 已提交
1609
        phi::funcs::SetConstant<phi::GPUContext, T> set_zero;                  \
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
        set_zero(context, &filter_grad_hwc, static_cast<T>(0));                \
        filter_grad_data = filter_grad_hwc.data<T>();                          \
      } else {                                                                 \
        block_size = 512;                                                      \
        if (output_channels > 1024 && output_channels <= 2048) {               \
          block_size = (output_channels - 1) / 2 + 1;                          \
        } else if (output_channels > 512 && output_channels <= 1024) {         \
          block_size = output_channels;                                        \
        }                                                                      \
        blocks =                                                               \
            std::min(std::max(block_size / output_channels, 1), output_width); \
        grid = dim3(ksize_width * ksize_height, output_height, batch_size);    \
        threads = dim3(std::min(output_channels, block_size), blocks, 1);      \
      }                                                                        \
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
      KernelDepthwiseConvFilterGradSp<T,                                       \
                                      c_filter_multiplier,                     \
                                      c_stride,                                \
                                      c_filter,                                \
                                      DataLayout::kNHWC,                       \
                                      fuse_relu_before_conv>                   \
          <<<grid, threads, 0, context.stream()>>>(output_grad_data,           \
                                                   input_data,                 \
                                                   batch_size,                 \
                                                   output_channels,            \
                                                   output_height,              \
                                                   output_width,               \
                                                   input_channels,             \
                                                   input_height,               \
                                                   input_width,                \
                                                   filter_multiplier,          \
                                                   ksize_height,               \
                                                   ksize_width,                \
                                                   stride_height,              \
                                                   stride_width,               \
                                                   padding_height,             \
                                                   padding_width,              \
                                                   dilate_height,              \
                                                   dilate_width,               \
                                                   filter_grad_data);          \
1649 1650
      if (c_filter != -1) {                                                    \
        std::vector<int> perm_axis({2, 3, 0, 1});                              \
H
hong 已提交
1651
        phi::funcs::TransposeNormal<phi::GPUContext, T> trans;                 \
1652 1653 1654 1655
        trans(context, filter_grad_hwc, filter_grad, perm_axis);               \
      }                                                                        \
    }                                                                          \
    return;                                                                    \
1656
  }
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
    check_case(1, 1, 3);
    check_case(1, 1, 5);
    check_case(1, 1, -1);
    check_case(1, 2, 3);
    check_case(1, 2, 5);
    check_case(1, 2, -1);
    check_case(2, 1, 3);
    check_case(2, 1, 5);
    check_case(2, 1, -1);
    check_case(2, 2, 3);
    check_case(2, 2, 5);
    check_case(2, 2, -1);
    check_case(0, 0, -1);
1670
#undef check_case
Z
zlx 已提交
1671 1672 1673
  }
};

H
hong 已提交
1674 1675
template class DepthwiseConvFunctor<phi::GPUContext, float, false>;
template class DepthwiseConvFunctor<phi::GPUContext, double, false>;
1676
template class DepthwiseConvFunctor<phi::GPUContext, platform::float16, false>;
Z
zlx 已提交
1677

H
hong 已提交
1678 1679
template class DepthwiseConvInputGradFunctor<phi::GPUContext, float, false>;
template class DepthwiseConvInputGradFunctor<phi::GPUContext, double, false>;
1680 1681 1682
template class DepthwiseConvInputGradFunctor<phi::GPUContext,
                                             platform::float16,
                                             false>;
1683

H
hong 已提交
1684 1685
template class DepthwiseConvFilterGradFunctor<phi::GPUContext, float, false>;
template class DepthwiseConvFilterGradFunctor<phi::GPUContext, double, false>;
1686 1687 1688
template class DepthwiseConvFilterGradFunctor<phi::GPUContext,
                                              platform::float16,
                                              false>;
1689

H
hong 已提交
1690 1691
template class DepthwiseConvFunctor<phi::GPUContext, float, true>;
template class DepthwiseConvFunctor<phi::GPUContext, double, true>;
1692
template class DepthwiseConvFunctor<phi::GPUContext, platform::float16, true>;
1693

H
hong 已提交
1694 1695
template class DepthwiseConvInputGradFunctor<phi::GPUContext, float, true>;
template class DepthwiseConvInputGradFunctor<phi::GPUContext, double, true>;
1696 1697 1698
template class DepthwiseConvInputGradFunctor<phi::GPUContext,
                                             platform::float16,
                                             true>;
1699

H
hong 已提交
1700 1701
template class DepthwiseConvFilterGradFunctor<phi::GPUContext, float, true>;
template class DepthwiseConvFilterGradFunctor<phi::GPUContext, double, true>;
1702 1703 1704
template class DepthwiseConvFilterGradFunctor<phi::GPUContext,
                                              platform::float16,
                                              true>;
Z
zlx 已提交
1705 1706 1707 1708

}  // namespace math
}  // namespace operators
}  // namespace paddle