data_layout_transform.cc 6.8 KB
Newer Older
1
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/data_layout_transform.h"
16
#include <string>
17
#include <vector>
18

Y
Yi Wang 已提交
19
#include "paddle/fluid/operators/math/math_function.h"
M
mozga-intel 已提交
20 21
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
22
#include "paddle/fluid/platform/mkldnn_reuse.h"
M
mozga-intel 已提交
23
#endif
24 25 26 27

namespace paddle {
namespace framework {

28 29 30 31 32 33 34 35 36 37 38 39
std::vector<int> GetAxis(const DataLayout& from, const DataLayout& to) {
  PADDLE_ENFORCE_NE(from, to,
                    "layout transform should transform different layout");
  if (from == DataLayout::kNCHW && to == DataLayout::kNHWC) {
    return {0, 2, 3, 1};
  } else if (from == DataLayout::kNHWC && to == DataLayout::kNCHW) {
    return {0, 3, 1, 2};
  } else {
    PADDLE_THROW("unsupported transform");
  }
}

40 41 42 43 44 45 46 47 48 49 50
struct CastDataLayout {
  CastDataLayout(const platform::DeviceContext* ctx,
                 const std::vector<int>& axis, const framework::Tensor& in,
                 framework::Tensor* out)
      : in_(in), out_(out), ctx_(ctx), axis_(axis) {}
  const framework::Tensor in_;
  framework::Tensor* out_;
  const platform::DeviceContext* ctx_;
  const std::vector<int> axis_;

  template <typename T>
D
dzhwinter 已提交
51
  void apply() {
52 53 54 55 56 57 58 59 60 61 62 63
    auto place = ctx_->GetPlace();

    if (platform::is_cpu_place(place)) {
      operators::math::Transpose<platform::CPUDeviceContext, T, 4> trans4;
      auto* context = static_cast<const platform::CPUDeviceContext*>(ctx_);
      trans4(*context, in_, out_, axis_);
    } else {
      PADDLE_THROW("Unsupport CPU <-> GPU!");
    }
  }
};

64 65 66
void TransDataLayout(const OpKernelType& kernel_type_for_var,
                     const OpKernelType& expected_kernel_type, const Tensor& in,
                     Tensor* out) {
67
  PADDLE_ENFORCE(
68 69
      platform::places_are_same_class(kernel_type_for_var.place_,
                                      expected_kernel_type.place_),
70 71
      "TransDataLayout only support DataLayout transform on same place!");

72 73 74
  PADDLE_ENFORCE(arity(in.dims()) == 4, "Input Arity only support 4!");

  auto& pool = platform::DeviceContextPool::Instance();
75

76
  auto src_dim = in.dims();
77 78
  std::vector<int64_t> dst_dim;

79 80
  auto axis = GetAxis(kernel_type_for_var.data_layout_,
                      expected_kernel_type.data_layout_);
81 82 83 84 85
  dst_dim.resize(axis.size());
  for (size_t i = 0; i < axis.size(); i++) {
    dst_dim[i] = src_dim[axis[i]];
  }

86 87
  out->Resize(make_ddim(dst_dim));
  out->mutable_data(expected_kernel_type.place_, in.type());
88

89
  framework::VisitDataType(
Y
Yu Yang 已提交
90
      in.type(),
91
      CastDataLayout(pool.Get(expected_kernel_type.place_), axis, in, out));
92

93
  out->set_layout(expected_kernel_type.data_layout_);
94 95
}

M
mozga-intel 已提交
96 97 98 99 100 101 102 103 104 105
#ifdef PADDLE_WITH_MKLDNN
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;

void* GetDataFromTensor(const Tensor& tensor, mkldnn::memory::data_type type) {
  switch (type) {
    case mkldnn::memory::data_type::f32:
      return platform::to_void_cast(tensor.data<float>());
    case mkldnn::memory::data_type::s8:
Y
Yu Yang 已提交
106
      return platform::to_void_cast(tensor.data<int8_t>());
M
mozga-intel 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    case mkldnn::memory::data_type::u8:
      return platform::to_void_cast(tensor.data<unsigned char>());
    case mkldnn::memory::data_type::s16:
      return platform::to_void_cast(tensor.data<int16_t>());
    case mkldnn::memory::data_type::s32:
      return platform::to_void_cast(tensor.data<int32_t>());
    default:
      PADDLE_THROW("wrong mkldnn type provided");
  }
}
#endif

void TransDataLayoutFromMKLDNN(const OpKernelType& kernel_type_for_var,
                               const OpKernelType& expected_kernel_type,
                               const Tensor& in, Tensor* out) {
  auto in_layout = kernel_type_for_var.data_layout_;
  auto out_layout = expected_kernel_type.data_layout_;
124
  auto place = expected_kernel_type.place_;
M
mozga-intel 已提交
125 126 127 128 129 130

  PADDLE_ENFORCE(
      in_layout == DataLayout::kMKLDNN && out_layout != DataLayout::kMKLDNN,
      "TransDataLayoutFromMKLDNN only supports transform from MKLDNN to "
      "non-MKLDNN");

131 132 133 134 135 136
  innerTransDataLayoutFromMKLDNN(in_layout, out_layout, in, out, place);
}

void innerTransDataLayoutFromMKLDNN(DataLayout in_layout, DataLayout out_layout,
                                    const Tensor& in, Tensor* out,
                                    platform::Place place) {
M
mozga-intel 已提交
137 138 139 140 141 142 143 144 145
#ifdef PADDLE_WITH_MKLDNN
  PADDLE_ENFORCE(in.format() != memory::format::format_undef &&
                     in.format() != memory::format::any,
                 "Input tensor should have specified memory format");

  // Set default as NCHW in case not specified
  out_layout =
      out_layout == DataLayout::kAnyLayout ? DataLayout::kNCHW : out_layout;

146
  auto& pool = platform::DeviceContextPool::Instance();
147
  auto* dev_ctx = dynamic_cast<platform::MKLDNNDeviceContext*>(pool.Get(place));
148 149
  auto& cpu_engine = dev_ctx->GetEngine();

M
mozga-intel 已提交
150 151 152 153 154
  std::vector<int> in_tz = paddle::framework::vectorize2int(in.dims());
  std::vector<int> out_tz = in_tz;

  memory::data_type in_type = ToMKLDNNDataType(in.type());
  PADDLE_ENFORCE(in_type != memory::data_type::data_undef,
Y
Yu Yang 已提交
155
                 "Input tensor type is not supported: %s", in.type());
M
mozga-intel 已提交
156

157 158 159 160
  auto in_format = platform::MKLDNNFormatForSize(in_tz.size(), in.format());
  auto out_format =
      platform::MKLDNNFormatForSize(in_tz.size(), ToMKLDNNFormat(out_layout));

M
mozga-intel 已提交
161 162 163
  // output tensor has the same dims as input. Reorder don't change dims
  out->Resize(in.dims());

164
  if (in_format != out_format) {
165
    void* in_data = GetDataFromTensor(in, in_type);
166 167
    const std::string key = platform::ReorderMKLDNNHandler::GetHash(
        in_tz, in_format, out_format, std::to_string(in_type));
M
mozga-intel 已提交
168

169 170
    platform::ReorderMKLDNNHandler handler(in_tz, in.type(), in_type, *dev_ctx,
                                           cpu_engine, key);
M
mozga-intel 已提交
171

172 173
    auto reorder_src_memory_p = handler.AcquireSrcMemory(in_format, in_data);
    auto reorder_dst_memory_p =
174
        handler.AcquireDstMemory(out, out_format, place);
175 176 177 178 179 180
    auto reorder_p =
        handler.AcquireReorder(reorder_dst_memory_p, reorder_src_memory_p);

    std::vector<mkldnn::primitive> pipeline;
    pipeline.push_back(*reorder_p);
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
181 182 183
  } else {
    out->ShareDataWith(in);
  }
M
mozga-intel 已提交
184
  out->set_layout(out_layout);
185 186
  // reset format since the out tensor will be feed to non-MKLDNN OPkernel
  out->set_format(memory::format::format_undef);
M
mozga-intel 已提交
187 188 189
#endif
}

190 191
}  // namespace framework
}  // namespace paddle