test_multiplex_op.py 3.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yibing Liu 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20
import paddle.fluid as fluid
Y
Yibing Liu 已提交
21 22 23 24 25


class TestMultiplexOp(OpTest):
    def setUp(self):
        self.op_type = "multiplex"
26 27 28 29
        rows = 4
        index = np.arange(0, rows).astype('int32')
        np.random.shuffle(index)
        index = np.reshape(index, (rows, 1))
30 31 32 33
        ins1 = np.random.random((rows, 25)).astype("float64")
        ins2 = np.random.random((rows, 25)).astype("float64")
        ins3 = np.random.random((rows, 25)).astype("float64")
        ins4 = np.random.random((rows, 25)).astype("float64")
Y
Yibing Liu 已提交
34
        self.inputs = {
35 36
            'Ids': index,
            'X': [('x1', ins1), ('x2', ins2), ('x3', ins3), ('x4', ins4)]
Y
Yibing Liu 已提交
37 38 39 40
        }
        # multiplex output
        output = np.zeros_like(ins1)
        for i in range(0, rows):
41
            k = index[i][0]
Y
Yibing Liu 已提交
42 43 44 45 46 47 48
            output[i] = self.inputs['X'][k][1][i]
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
49 50 51 52 53 54 55 56 57 58
        self.check_grad(['x1', 'x2', 'x3', 'x4'], 'Out')

    def test_check_grad_ignore_x1(self):
        self.check_grad(['x2', 'x3', 'x4'], 'Out', no_grad_set=set('x1'))

    def test_check_grad_ignore_x1_x2(self):
        self.check_grad(['x3', 'x4'], 'Out', no_grad_set=set(['x1', 'x2']))

    def test_check_grad_ignore_x3(self):
        self.check_grad(['x1', 'x2', 'x4'], 'Out', no_grad_set=set('x3'))
Y
Yibing Liu 已提交
59 60


61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
class TestMultiplexOpError(unittest.TestCase):
    def test_errors(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x1 = fluid.data(name='x1', shape=[None, 2], dtype='int64')
            x2 = fluid.data(name='x2', shape=[None, 2], dtype='int64')
            index = fluid.data(name='index', shape=[None, 1], dtype='int32')

            def test_list():
                # the inputs type must be list
                fluid.layers.multiplex(inputs=x1, index=index)

            self.assertRaises(TypeError, test_list)

            def test_len():
                fluid.layers.multiplex(inputs=[x1], index=index)

            self.assertRaises(ValueError, test_len)

            def test_type():
                y1 = fluid.data(name='y1', shape=[None, 2], dtype='int16')
                y2 = fluid.data(name='y2', shape=[None, 2], dtype='int16')
                fluid.layers.multiplex(inputs=[y1, y2], index=index)

            self.assertRaises(TypeError, test_type)

            def test_type2():
                index2 = fluid.data(
                    name='index2', shape=[None, 1], dtype='int16')
                fluid.layers.multiplex(inputs=[x1, x2], index=index2)

            self.assertRaises(TypeError, test_type2)


Y
Yibing Liu 已提交
94 95
if __name__ == '__main__':
    unittest.main()