mkldnn_reuse.h 59.0 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <memory>
17
#include <sstream>
J
Jacek Czaja 已提交
18
#include <string>
19
#include <utility>
J
Jacek Czaja 已提交
20
#include <vector>
21
#include "boost/optional.hpp"
X
xiaoli.liu@intel.com 已提交
22
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
23
#include "paddle/fluid/framework/operator.h"
24
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
25 26 27 28 29 30
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

31 32
using framework::DataLayout;
using framework::Tensor;
J
Jacek Czaja 已提交
33
using user_function = std::function<std::shared_ptr<float>(const float*)>;
34
using memory = mkldnn::memory;
J
Jacek Czaja 已提交
35

36 37
template <typename T, typename TForward,
          typename TBackward = mkldnn_dummy_primitive>
38 39 40 41 42 43 44 45 46 47
class MKLDNNHandlerT {
 public:
  MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                 platform::Place cpu_place, const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
        fwd_pd_(nullptr),
        bwd_pd_(nullptr) {
48 49
    if (platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id() !=
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default) {
50 51 52 53 54 55
      key_ = key_common_;
    } else {
      key_ = key_common_ + "-t:" + ThreadIDasStr();
    }
  }

A
Adam 已提交
56
  std::shared_ptr<TForward> AcquireForwardPrimitive() {
57 58 59 60
    const std::string key_p = key_ + "@forward_p";
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
A
Adam 已提交
61
      forward_p = std::make_shared<TForward>(*fwd_pd_);
62 63 64 65 66
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

A
Adam 已提交
67
  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
68 69 70 71
    const std::string key_p = key_ + "@backward_p";
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
A
Adam 已提交
72
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
73 74 75 76 77
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

78 79 80
  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
81 82
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
83 84 85
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
A
Adam 已提交
86 87
    T* ptr = output->mutable_data<T>(place_, fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr,
88 89 90 91 92 93
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const framework::Tensor* output) {
    const T* output_data = output->data<T>();
A
Adam 已提交
94 95
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->dst_desc(), to_void_cast<T>(output_data), "@bwd-dst_mem_p");
96 97 98 99 100
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
A
Adam 已提交
101 102
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
103 104 105 106
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
A
Adam 已提交
107 108 109 110
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr,
                                            "@diff_src_mem_p");
111 112
  }

113
 protected:
114 115 116 117
  bool isCached() {
    const std::string key_pd = key_common_ + "@forward_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
118 119 120

    const std::string key_p = key_ + "@forward_p";
    return (dev_ctx_.GetBlob(key_p) != nullptr);
121 122
  }

123 124 125 126 127 128
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
129 130 131 132 133 134 135 136 137 138 139 140 141
    // Forward PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_pd = key_common_ + "@forward_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_pd));
      if (fwd_pd_ == nullptr) {
142 143
        CreateForwardPrimitiveDescriptor(first_arg,
                                         std::forward<Args>(args)...);
144 145 146 147 148
        dev_ctx_.SetBlob(key_pd, fwd_pd_);
      }
    }
  }

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

170 171
  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
172 173 174
    const std::string key_fwd_pd = key_common_ + "@forward_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_fwd_pd));
G
GaoWei8 已提交
175 176 177
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_, platform::errors::Unavailable(
                     "Get MKLDNN Forward primitive %s failed.", key_fwd_pd));
178 179 180 181 182 183 184 185 186 187 188
    const std::string key_pd = key_ + "@backward_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

189
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
190
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
191
    const auto local_key = key_ + suffix;
192 193 194
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
195
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
196 197 198 199 200 201 202
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

203 204 205 206 207 208 209 210 211 212 213 214
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  void AcquireReorder(const std::shared_ptr<mkldnn::memory>& user_memory_p,
                      const std::shared_ptr<mkldnn::memory>& target_memory_p,
                      const std::string& suffix) {
    const auto key_reorder_p = key_ + suffix + "reorder_p";

    auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
    }

    mkldnn::stream astream(engine_);
    reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                 {MKLDNN_ARG_TO, *target_memory_p}});
    astream.wait();
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryWithReorder(
      const mkldnn::memory::desc& user_md,
      const mkldnn::memory::desc& target_md, void* ptr,
      const std::string& suffix, bool is_persistent = false) {
    const auto target_key = key_ + suffix + "_target";
    const auto key_reorder_p = key_ + suffix + "reorder_p";
    const auto user_key = key_ + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(target_key));

    if (target_memory_p == nullptr) {
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, engine_, ptr);
      if (user_md != target_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(target_md, engine_);
        auto reorder_p =
            std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);

        mkldnn::stream astream(engine_);
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx_.SetBlob(user_key, user_memory_p);
      dev_ctx_.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
      mkldnn::stream astream(engine_);

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      }
    }
    return target_memory_p;
  }

282 283 284 285 286 287
  std::shared_ptr<mkldnn::memory> AcquireMemory(const std::string& suffix) {
    const auto local_key = key_ + suffix;
    return std::static_pointer_cast<mkldnn::memory>(
        dev_ctx_.GetBlob(local_key));
  }

288 289 290 291 292 293 294 295 296 297
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  platform::Place place_;
  std::string key_;
  std::string key_common_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
};

// TODO(grygielski) this class will be deleted later.
J
Jacek Czaja 已提交
298 299 300 301
class MKLDNNHandler {
 public:
  MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                const std::string& base_key)
302
      : dev_ctx_(dev_ctx), engine_(engine), key_common_(base_key) {
303 304
    if (platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id() !=
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default) {
305
      key_ = key_common_;
306
    } else {
A
Adam 已提交
307
      key_ = key_common_ + "-t:" + ThreadIDasStr();
308
    }
309
  }
J
Jacek Czaja 已提交
310 311 312 313 314 315 316 317 318 319 320

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_dst_mem_p");
  }

A
Adam 已提交
321
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
J
Jacek Czaja 已提交
322
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
323
    return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p");
J
Jacek Czaja 已提交
324 325
  }

A
Adam 已提交
326
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
J
Jacek Czaja 已提交
327
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
328
    return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p");
J
Jacek Czaja 已提交
329 330 331
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
332
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
J
Jacek Czaja 已提交
333 334 335 336
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
337
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

  // This incarnation of AcquireMemory can call user function eg. custom reorder
  // or preprocessing routine if needed
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const mkldnn::memory::desc& md, void* ptr, const std::string& suffix,
      user_function custom_func = {}) {
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Call custom reorder/preprocessing func if available
      if (custom_func) {
        auto reordered_data = custom_func(reinterpret_cast<const float*>(ptr));
        dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }

A
Adam 已提交
362
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
363 364 365 366 367 368 369
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

370
  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
371
      const std::vector<int64_t>& dims, const mkldnn::memory::data_type dtype,
372
      const MKLDNNMemoryFormat& fmt, void* ptr, const std::string& suffix) {
373 374 375 376 377 378 379
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto md = mkldnn::memory::desc(dims, dtype, fmt);

A
Adam 已提交
380
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
381 382 383 384 385 386 387
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const std::shared_ptr<mkldnn::memory>& user_memory_p,
      const std::shared_ptr<mkldnn::memory>& target_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto stored_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (stored_reorder_p) {
      pipeline.push_back(*stored_reorder_p);
    } else {
      auto reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
405 406 407 408
      mkldnn::stream astream(engine_);
      reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                   {MKLDNN_ARG_TO, *target_memory_p}});
      astream.wait();
J
Jacek Czaja 已提交
409 410 411 412 413 414
    }

    return target_memory_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
415 416
      mkldnn::memory::desc& md,       // NOLINT
      mkldnn::memory::desc& user_md,  // NOLINT
J
Jacek Czaja 已提交
417 418 419
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
420 421
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
422 423 424 425 426 427
    // create reorder primitive if the input format is not the preferred one
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto target_memory_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
A
Adam 已提交
428 429 430

    mkldnn::stream astream(engine_);

J
Jacek Czaja 已提交
431 432
    if (target_memory_p == nullptr) {
      target_memory_p = user_memory_p;
A
Adam 已提交
433 434 435
      if (md != user_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(md, engine_);
        std::shared_ptr<mkldnn::reorder::primitive_desc> reorder_pd;
436 437 438 439 440
        if (is_INT8) {
          mkldnn::primitive_attr
              attri;  // attribute for int8 weights and bias data reorder.
          attri.set_output_scales(mask, scale_data);

A
Adam 已提交
441 442 443
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p, attri));
444
        } else {
A
Adam 已提交
445 446 447
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p));
448
        }
A
Adam 已提交
449 450
        auto reorder_p =
            std::shared_ptr<mkldnn::reorder>(new mkldnn::reorder(*reorder_pd));
J
Jacek Czaja 已提交
451
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
452 453 454 455

        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
456 457 458 459 460 461 462
      }
      dev_ctx_.SetBlob(local_key, target_memory_p);
    } else if (!is_persistent) {
      // Make reorder if needed
      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
A
Adam 已提交
463 464 465
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
466 467 468 469 470 471 472 473 474
      }
    }
    return target_memory_p;
  }

 protected:
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  std::string key_;
475
  std::string key_common_;
J
Jacek Czaja 已提交
476 477
};

478 479 480
template <typename T>
class BinaryMKLDNNHandler : public platform::MKLDNNHandlerT<T, dnnl::binary> {
 public:
481 482
  BinaryMKLDNNHandler(const dnnl::algorithm algo, const int axis,
                      const MKLDNNDeviceContext& dev_ctx,
483 484
                      const mkldnn::engine engine, platform::Place cpu_place,
                      const Tensor* x, const Tensor* y, Tensor* z,
485
                      float scale_x, float scale_y, float scale_z,
486
                      const std::string& uniq_name)
487
      : platform::MKLDNNHandlerT<T, dnnl::binary>(
488
            dev_ctx, engine, cpu_place,
489 490 491 492
            platform::CreateKey(
                framework::vectorize(x->dims()),
                uniq_name + (algo == dnnl::algorithm::binary_mul ? "M" : ""))) {
    // bradcasting combined with in-place may require
493 494
    auto rankdiff = x->dims().size() - y->dims().size();
    if (rankdiff > 0) {
495 496 497
      auto suffix = std::to_string(rankdiff);
      this->key_ += suffix;
      this->key_common_ += suffix;
498 499
    }

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          x->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument("Wrong layout set for X tensor"));
      PADDLE_ENFORCE_NE(
          x->format(), MKLDNNMemoryFormat::undef,
          platform::errors::InvalidArgument("Wrong format set for X tensor"));

      PADDLE_ENFORCE_EQ(
          y->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument("Wrong layout set for Y tensor"));
      PADDLE_ENFORCE_NE(
          y->format(), MKLDNNMemoryFormat::undef,
          platform::errors::InvalidArgument("Wrong format set for Y tensor"));

      const auto src_x_tz = framework::vectorize(x->dims());
      const auto src_y_tz = framework::vectorize(y->dims());
      const auto dst_tz = framework::vectorize(z->dims());

      const auto src0_md = dnnl::memory::desc(
          src_x_tz, platform::MKLDNNGetDataType<T>(), x->format());
521
      auto src1_md = dnnl::memory::desc(
522
          src_y_tz, platform::MKLDNNGetDataType<T>(), y->format());
523
      if (rankdiff > 0) {
524 525 526
        std::vector<int64_t> dims1_ex(rankdiff, 1);
        dims1_ex.insert(next(dims1_ex.begin(), (axis == -1 ? rankdiff : axis)),
                        src_y_tz.begin(), src_y_tz.end());
527 528
        src1_md = src1_md.reshape(dims1_ex);
      }
529 530 531
      const auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType<T>(),
                                       MKLDNNMemoryFormat::any);

532 533 534
      auto attributes = CreateAttributes(algo, scale_x, scale_y, scale_z);
      this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md,
                                              src1_md, dst_md);
535
    }
536 537 538 539 540 541
  }

  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(
542
        this->fwd_pd_->src1_desc(), to_void_cast<T>(input_data), "@src1_mem_p");
543
  }
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

 private:
  static inline dnnl::primitive_attr CreateAttributes(dnnl::algorithm op,
                                                      float scale_x,
                                                      float scale_y,
                                                      float scale_z) {
    // Scales set in attributes for inputs contibute to the output equation
    // in the following way (assuming no broadcasting takes place):
    // output_i = scale_0 * x_i <+ or *> scale_1 * y_i;
    // Hence we have to create scales that will:
    // 1. Dequantize both values, by multiplying with (1.0 / scale_x_or_y)
    // 2. Quantize their result to output scale range, by multiplying with
    // (scale_z)
    // If we combine these two, we end up with following equation
    // output = scale_out * (1/scale_x * x <* or +> 1/scale_y * y)
    // Hence, to mimic such behaviour using provided interface,
    // For add operation the equation is equal to:
    // output = (scale_out / scale_x) * x + (scale_out / scale_y) * y
    //                <scale_0>                  <scale_1>
    // For mul operation on the other hand
    // output = (scale_out / scale_x) * x * (1.0 / scale_y) * y
    //                <scale_0>                 <scale_1>
    float scale_0 = scale_z / scale_x;
    float scale_1 =
        op == dnnl::algorithm::binary_add ? scale_z / scale_y : 1.0 / scale_y;
    dnnl::primitive_attr attributes;
    attributes.set_scales(/* input_x_id = */ DNNL_ARG_SRC_0, /* mask = */ 0,
                          {scale_0});
    attributes.set_scales(/* input_y_id = */ DNNL_ARG_SRC_1, /* mask = */ 0,
                          {scale_1});
    return attributes;
  }
576 577
};

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
class SumMKLDNNHandler : public MKLDNNHandler {
 public:
  SumMKLDNNHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                   mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

  std::shared_ptr<mkldnn::sum::primitive_desc> AcquireSumPrimitiveDescriptor(
      const std::vector<std::shared_ptr<mkldnn::memory>>& src_mems,
      const std::vector<float>& scales, const mkldnn::memory::desc& dst_md) {
    const std::string key_sum_pd = key_ + "@sum_pd";

    sum_pd_ = std::static_pointer_cast<mkldnn::sum::primitive_desc>(
        dev_ctx_.GetBlob(key_sum_pd));
    if (sum_pd_ == nullptr) {
      // Get vector of inputs primitive descriptors
A
Adam 已提交
593
      std::vector<mkldnn::memory::desc> src_ds;
594
      for (auto& input_mem : src_mems) {
A
Adam 已提交
595
        src_ds.push_back(input_mem->get_desc());
596 597
      }

A
Adam 已提交
598 599
      sum_pd_.reset(
          new mkldnn::sum::primitive_desc(dst_md, scales, src_ds, engine_));
600 601 602 603 604 605 606
      dev_ctx_.SetBlob(key_sum_pd, sum_pd_);
    }

    return sum_pd_;
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
A
Adam 已提交
607
    return this->AcquireMemoryFromPrimitive(sum_pd_->dst_desc(), ptr,
608 609 610
                                            "@dst_mem_p");
  }

A
Adam 已提交
611 612 613 614 615
  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src2_mem_p");
  }

A
Adam 已提交
616
  std::shared_ptr<mkldnn::sum> AcquireSum() {
617 618 619 620
    auto prim_key = key_ + "@sum_p";
    auto sum_p =
        std::static_pointer_cast<mkldnn::sum>(dev_ctx_.GetBlob(prim_key));
    if (sum_p == nullptr) {
A
Adam 已提交
621
      sum_p = std::make_shared<mkldnn::sum>(*sum_pd_);
622 623 624 625 626 627 628 629 630
      dev_ctx_.SetBlob(prim_key, sum_p);
    }
    return sum_p;
  }

 private:
  std::shared_ptr<mkldnn::sum::primitive_desc> sum_pd_;
};

631
template <typename T>
632 633 634
class ActivationMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                            mkldnn::eltwise_backward> {
635
 public:
A
Adam 已提交
636
  ActivationMKLDNNHandler(const std::vector<int64_t>& dims,
637
                          mkldnn::algorithm algorithm, float alpha, float beta,
638
                          const MKLDNNMemoryFormat fmt,
639 640 641 642
                          const platform::MKLDNNDeviceContext& dev_ctx,
                          platform::Place cpu_place,
                          const std::string& unique_name)

643 644 645
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
646
            platform::CreateKey(dims, "a", algorithm, unique_name)) {
647 648
    auto md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);

649 650
    this->AcquireForwardPrimitiveDescriptor(mkldnn::prop_kind::forward_training,
                                            algorithm, md, alpha, beta);
651
  }
652

A
Adam 已提交
653
  ActivationMKLDNNHandler(const std::vector<int64_t>& dims,
654 655 656 657 658 659 660
                          mkldnn::algorithm algorithm, float alpha, float beta,
                          const MKLDNNMemoryFormat fmt,
                          const MKLDNNMemoryFormat diff_fmt,
                          const platform::MKLDNNDeviceContext& dev_ctx,
                          platform::Place cpu_place,
                          const std::string& unique_name)

661 662 663
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
664
            platform::CreateKey(dims, "a", algorithm, unique_name)) {
665 666 667 668 669 670 671
    auto diff_dst_md = platform::MKLDNNMemDesc(
        dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
    auto src_md =
        platform::MKLDNNMemDesc(dims, platform::MKLDNNGetDataType<T>(), fmt);

    this->AcquireBackwardPrimitiveDescriptor(algorithm, diff_dst_md, src_md,
                                             alpha, beta);
672
  }
673

674 675 676
  std::shared_ptr<mkldnn::memory> AcquireBackwardSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
677
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
678 679
                                            to_void_cast<T>(input_data),
                                            "@bwd-src_mem_p");
680 681 682
  }
};

J
Jacek Czaja 已提交
683 684 685
template <typename T>
class LRNMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward> {
686
 public:
687
  LRNMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
J
Jacek Czaja 已提交
688
                   const platform::MKLDNNDeviceContext& dev_ctx,
689 690 691
                   const mkldnn::engine mkldnn_engine,
                   platform::Place cpu_place, const Tensor* input,
                   const std::string& unique_name)
692

J
Jacek Czaja 已提交
693
      : platform::MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward>(
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
            dev_ctx, mkldnn_engine, cpu_place,
            platform::CreateKey(framework::vectorize(input->dims()),
                                unique_name)) {
    if (!this->isCached()) {
      const int n = ctx.Attr<int>("n");
      // MKL-DNN implements LRN in a caffe way:
      // http://caffe.berkeleyvision.org/tutorial/layers/lrn.html
      // Where sum of squares is divided by size of normalization window
      // this is not the case for PaddlePaddle LRN.
      // Hence we need to compensate for this diffrence by
      // multipliing alpha by size of window(n)
      const float alpha = ctx.Attr<float>("alpha") * static_cast<float>(n);
      const float beta = ctx.Attr<float>("beta");
      const float k = ctx.Attr<float>("k");
      bool is_test = ctx.Attr<bool>("is_test");

      auto dims = paddle::framework::vectorize(input->dims());

      auto src_md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(),
                                         input->format());

      this->AcquireForwardPrimitiveDescriptor(
          is_test ? mkldnn::prop_kind::forward_inference
                  : mkldnn::prop_kind::forward_training,
          mkldnn::algorithm::lrn_across_channels, src_md, n, alpha, beta, k);
    }
720 721
  }

A
Adam 已提交
722 723
  LRNMKLDNNHandler(const std::vector<int64_t>& dims, const int n,
                   const float alpha, const float beta, const float k,
J
Jacek Czaja 已提交
724 725 726 727
                   const MKLDNNMemoryFormat fmt,
                   const MKLDNNMemoryFormat diff_fmt,
                   const platform::MKLDNNDeviceContext& dev_ctx,
                   platform::Place cpu_place, const std::string& unique_name)
728

J
Jacek Czaja 已提交
729 730
      : platform::MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
731
            platform::CreateKey(dims, unique_name)) {
J
Jacek Czaja 已提交
732 733 734 735
    auto src_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);
    auto diff_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
736

J
Jacek Czaja 已提交
737
    this->AcquireBackwardPrimitiveDescriptor(
A
Adam 已提交
738 739
        mkldnn::algorithm::lrn_across_channels, src_md, diff_md, n, alpha, beta,
        k);
740 741
  }

J
Jacek Czaja 已提交
742 743 744
  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(
      framework::Tensor* workspace) {
    T* ptr = workspace->mutable_data<T>(
A
Adam 已提交
745 746 747
        this->place_, this->fwd_pd_->workspace_desc().get_size());
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->workspace_desc(),
                                            ptr, "@wrk_mem_p");
J
Jacek Czaja 已提交
748 749 750 751 752
  }

  std::shared_ptr<mkldnn::memory> AcquireBackwardWorkspaceMemory(
      const framework::Tensor* workspace) {
    const T* workspace_data = workspace->data<T>();
A
Adam 已提交
753 754 755
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->workspace_desc(),
                                            to_void_cast<T>(workspace_data),
                                            "@bwd-wrk_mem_p");
J
Jacek Czaja 已提交
756
  }
757 758
};

759 760 761
template <typename T>
class PoolingMKLDNNHandler : public MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                                   mkldnn::pooling_backward> {
762
 public:
763 764 765 766 767
  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
                       const MKLDNNDeviceContext& dev_ctx,
                       const mkldnn::engine mkldnn_engine,
                       platform::Place cpu_place, const Tensor* input,
                       Tensor* output, const std::string& unique_name)
768 769 770
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
            platform::CreateKey(framework::vectorize(input->dims()),
                                framework::ToMKLDNNDataType(input->type()),
                                unique_name)) {
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                        platform::errors::InvalidArgument(
                            "Wrong layout set for Input tensor"));
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));

      const std::string pooling_type = ctx.Attr<std::string>("pooling_type");

      std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
      std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      const bool global_pooling = ctx.Attr<bool>("global_pooling");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");

      // Only 2D pooling is supported now
      PADDLE_ENFORCE_EQ(ksize.size(), 2,
                        platform::errors::InvalidArgument(
                            "ksize must be 2D, i.e. 2D pooling"));
      PADDLE_ENFORCE_EQ(pooling_type == "max" || pooling_type == "avg", true,
                        platform::errors::InvalidArgument(
                            "pooling_type must be 'max' or 'avg'"));
      PADDLE_ENFORCE_EQ(input->dims().size(), 4,
                        platform::errors::InvalidArgument(
                            "Input dim must be with 4, i.e. NCHW"));

      const auto input_dims = input->dims();
      framework::DDim data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());

      if (global_pooling) {
        operators::UpdateKsize(&ksize, data_dims);
      }

      operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                               data_dims, strides, ksize);

      const auto src_tz = paddle::framework::vectorize(input->dims());
      const auto dst_tz = paddle::framework::vectorize(output->dims());

      const auto is_test = ctx.Attr<bool>("is_test");

      const auto dt = framework::ToMKLDNNDataType(input->type());
      const auto fmt = input->format();

      const auto exclude_padding = ctx.Attr<bool>("exclusive");

      const auto src_md = mkldnn::memory::desc(src_tz, dt, fmt);
      /* create memory descriptor for pooling without specified format
       * ('any') which lets a primitive (pooling in this case) choose
       * the memory format preferred for best performance
       */

      const auto dst_md =
          platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any);

      auto mkldnn_paddings = ToMkldnnPadding(paddings);

      const bool ceil_mode = ctx.Attr<bool>("ceil_mode");

      if (ceil_mode) {
        CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                          mkldnn_paddings[1]);
      }
      this->AcquireForwardPrimitiveDescriptor(
          is_test ? mkldnn::prop_kind::forward_inference
                  : mkldnn::prop_kind::forward_training,
          pooling_type == "max"
              ? mkldnn::algorithm::pooling_max
              : (exclude_padding
                     ? mkldnn::algorithm::pooling_avg_exclude_padding
                     : mkldnn::algorithm::pooling_avg_include_padding),
          src_md, dst_md, strides, ksize, mkldnn_paddings[0],
          mkldnn_paddings[1]);
856
    }
857 858 859
  }

  PoolingMKLDNNHandler(
A
Adam 已提交
860 861 862 863 864 865
      const std::vector<int64_t>& diff_dst_dims,
      const std::vector<int64_t>& diff_src_dims,
      const std::vector<int64_t>& ksize, const std::vector<int64_t>& strides,
      const std::vector<int64_t>& paddings, const std::string& pooling_type,
      bool ceil_mode, const MKLDNNMemoryFormat fmt,
      const MKLDNNMemoryFormat diff_dst_fmt, mkldnn::memory::data_type dt,
866
      const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place,
867
      const std::string& unique_name, bool exclude_padding)
868 869 870
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
871
            platform::CreateKey(diff_src_dims, dt, unique_name)) {
872 873 874 875 876 877
    auto diff_dst_md = mkldnn::memory::desc(
        diff_dst_dims, platform::MKLDNNGetDataType<T>(), diff_dst_fmt);
    auto diff_src_md =
        mkldnn::memory::desc(diff_src_dims, platform::MKLDNNGetDataType<T>(),
                             MKLDNNMemoryFormat::any);

878 879
    auto mkldnn_paddings = ToMkldnnPadding(paddings);

880
    this->AcquireBackwardPrimitiveDescriptor(
881 882 883 884 885
        pooling_type == "max"
            ? mkldnn::algorithm::pooling_max
            : (exclude_padding
                   ? mkldnn::algorithm::pooling_avg_exclude_padding
                   : mkldnn::algorithm::pooling_avg_include_padding),
886
        diff_src_md, diff_dst_md, strides, ksize, mkldnn_paddings[0],
A
Adam 已提交
887
        mkldnn_paddings[1]);
888 889 890
  }

  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(void) {
A
Adam 已提交
891
    mkldnn::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
892 893 894
    // Pooling PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
895 896 897
    auto local_key = this->key_common_ + "@workspace";
    auto mem_p = std::static_pointer_cast<mkldnn::memory>(
        this->dev_ctx_.GetBlob(local_key));
898 899 900 901
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
902 903
      mem_p = std::static_pointer_cast<mkldnn::memory>(
          this->dev_ctx_.GetBlob(local_key));
904
      if (mem_p == nullptr) {
A
Adam 已提交
905
        mem_p = std::make_shared<mkldnn::memory>(workspace_md, this->engine_);
906
        this->dev_ctx_.SetBlob(local_key, mem_p);
907 908 909 910 911 912 913 914 915 916 917 918
      }
    }
    return mem_p;
  }

 private:
  static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                        int padding, int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
A
Adam 已提交
919 920 921 922
      const std::vector<int64_t>& src_tz, const std::vector<int64_t>& dst_tz,
      const std::vector<int64_t>& kernel_size,
      const std::vector<int64_t>& paddings, const std::vector<int64_t>& strides,
      std::vector<int64_t>& right_bot_padding) {  // NOLINT
923 924 925 926
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                             paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
J
Jacek Czaja 已提交
927
        right_bot_padding[i] += strides[i] - 1;
928 929 930 931 932
      }
    }
  }
};

933
template <typename T>
934 935
class TransposeMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
936 937
  TransposeMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                         std::vector<int>& axis,      // NOLINT
938 939 940 941
                         const platform::MKLDNNDeviceContext& dev_ctx,
                         mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
942 943 944 945
        axis_(axis),
        logical_axis_(dims.size(), 0) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
946
      const MKLDNNMemoryFormat& fmt, void* ptr) {
947 948 949 950 951 952 953 954 955
    auto local_key = key_ + "@user_src_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Make memory descriptor using input format, unless it
      // cannot be trusted (nchw) then make up memory fmt manually
      for (size_t i = 0; i < logical_axis_.size(); ++i) {
        logical_axis_[i] = i;
      }
956

A
Adam 已提交
957
      auto src_md = fmt != MKLDNNMemoryFormat::nchw
958
                        ? platform::MKLDNNMemDesc(
959
                              dims_, platform::MKLDNNGetDataType<T>(), fmt)
960
                        : Axis2MemoryDesc(dims_, logical_axis_);
A
Adam 已提交
961
      mem_p = std::make_shared<mkldnn::memory>(src_md, engine_, ptr);
962 963 964 965 966 967
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }
968 969 970 971 972 973 974

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output,
                                                   platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
975
      auto dst_md = Axis2MemoryDesc(dims_, axis_);
976

A
Adam 已提交
977
      auto dst_data = output->mutable_data<T>(place, dst_md.get_size());
978

A
Adam 已提交
979
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
980 981
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
982
      auto dst_data = output->mutable_data<T>(place);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireTranspose(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@transpose_p";
    auto transpose_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (transpose_p == nullptr) {
      transpose_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, transpose_p);
    }
    return transpose_p;
  }

 protected:
A
Adam 已提交
1003 1004 1005 1006
  mkldnn::memory::desc Axis2MemoryDesc(std::vector<int64_t>& nchw_tz,  // NOLINT
                                       std::vector<int>& axis          // NOLINT
                                       ) {
    size_t ndims = axis.size();
1007

A
Adam 已提交
1008
    std::vector<int64_t> strides(ndims);
1009
    unsigned int total_stride = 1;
A
Adam 已提交
1010 1011
    for (int i = ndims - 1; i >= 0; --i) {
      strides[axis[i]] = total_stride;
1012 1013
      total_stride *= nchw_tz[axis[i]];
    }
A
Adam 已提交
1014 1015 1016 1017
    mkldnn::memory::desc mem_d(nchw_tz, platform::MKLDNNGetDataType<T>(),
                               strides);

    return mem_d;
1018 1019 1020
  }

 private:
A
Adam 已提交
1021
  std::vector<int64_t> dims_;
1022
  std::vector<int> axis_;
1023
  std::vector<int> logical_axis_;
1024 1025
};

1026 1027
class ReorderMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
1028
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
                       framework::proto::VarType::Type vtype,
                       mkldnn::memory::data_type dtype,
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
        vtype_(vtype),
        dtype_(dtype) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
1039
      const MKLDNNMemoryFormat& fmt, void* ptr) {
1040
    return this->AcquireMemory(dims_, dtype_, fmt, ptr, "@user_src_mem_p");
1041 1042 1043
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
1044
      framework::Tensor* output, const MKLDNNMemoryFormat& fmt,
1045 1046 1047 1048 1049 1050 1051 1052 1053
      platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_, fmt);

      auto dst_data = output->mutable_data(place, vtype_);

A
Adam 已提交
1054
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      auto dst_data = output->mutable_data(place, vtype_);
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireReorder(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@reorder_p";
    auto reorder_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, reorder_p);
    }
    return reorder_p;
  }

 private:
A
Adam 已提交
1078
  std::vector<int64_t> dims_;
1079 1080 1081 1082
  framework::proto::VarType::Type vtype_;
  mkldnn::memory::data_type dtype_;
};

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
template <typename T>
struct convolutional_algorithm;

template <>
struct convolutional_algorithm<mkldnn::convolution_forward> {
  static constexpr mkldnn::algorithm T = mkldnn::algorithm::convolution_direct;
};

template <>
struct convolutional_algorithm<mkldnn::deconvolution_forward> {
  static constexpr mkldnn::algorithm T =
      mkldnn::algorithm::deconvolution_direct;
};

J
Jacek Czaja 已提交
1097 1098 1099
template <class forward_t, class backward_data_t, class backward_weights_t>
class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
 public:
1100 1101 1102 1103
  ConvMKLDNNTemplateHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                            mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

1104 1105 1106 1107 1108 1109 1110 1111 1112
  // TODO(jczaja): remove after conv int8 is adapted
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

J
Jacek Czaja 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      std::shared_ptr<typename backward_data_t::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<typename backward_weights_t::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

A
Adam 已提交
1130
  size_t GetDstMemorySize() const { return conv_pd_->dst_desc().get_size(); }
J
Jacek Czaja 已提交
1131

1132
  MKLDNNMemoryFormat GetDstFormat() const {
A
Adam 已提交
1133
    return paddle::platform::GetMKLDNNFormat(conv_pd_->dst_desc());
J
Jacek Czaja 已提交
1134 1135 1136
  }

  size_t GetDiffWeightsMemorySize() const {
A
Adam 已提交
1137
    return conv_bwd_weights_pd_->diff_weights_desc().get_size();
J
Jacek Czaja 已提交
1138 1139 1140
  }

  size_t GetDiffSourceMemorySize() const {
A
Adam 已提交
1141
    return conv_bwd_data_pd_->diff_src_desc().get_size();
J
Jacek Czaja 已提交
1142 1143 1144 1145 1146
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1147 1148
    auto src_pd = conv_bwd_weights_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1149 1150 1151 1152 1153 1154 1155
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1156 1157
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1158 1159 1160 1161 1162 1163 1164
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
A
Adam 已提交
1165
        conv_bwd_weights_pd_->diff_weights_desc(), ptr, "@diff_weights_mem_p");
J
Jacek Czaja 已提交
1166 1167 1168 1169 1170
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1171 1172
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1173 1174 1175 1176 1177 1178 1179
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1180 1181
    auto weights_pd = conv_bwd_data_pd_->weights_desc();
    auto user_pd = user_weights_memory_p->get_desc();
J
Jacek Czaja 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
A
Adam 已提交
1202 1203
    return this->AcquireMemoryFromPrimitive(conv_bwd_data_pd_->diff_src_desc(),
                                            ptr, "@diff_src_mem_p");
J
Jacek Czaja 已提交
1204 1205 1206
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
A
Adam 已提交
1207
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_desc(), ptr,
J
Jacek Czaja 已提交
1208 1209 1210 1211 1212 1213
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1214 1215
    auto src_pd = conv_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1216 1217 1218 1219
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

A
Adam 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemory(
      const mkldnn::memory::desc& md, void* ptr,
      user_function custom_func = {}) {
    return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func);
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_bias_mem_p");
  }

J
Jacek Czaja 已提交
1231 1232 1233
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
1234 1235
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
A
Adam 已提交
1236 1237
    auto user_weights_pd = user_weights_memory_p->get_desc();
    auto weights_pd = conv_pd_->weights_desc();
1238 1239 1240
    return this->AcquireMemory(
        weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p",
        pipeline, is_persistent, is_INT8, scale_data, mask);
J
Jacek Czaja 已提交
1241 1242 1243 1244
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
1245 1246 1247 1248
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
A
Adam 已提交
1249 1250
    auto user_bias_pd = user_bias_memory_p->get_desc();
    auto bias_pd = conv_pd_->bias_desc();
J
Jacek Czaja 已提交
1251
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
1252 1253
                               "@bias_mem_p", pipeline, is_persistent, is_INT8,
                               scale_data, mask);
J
Jacek Czaja 已提交
1254 1255
  }

1256
  mkldnn::primitive_attr CreatePostOps(
1257 1258
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
1259
      float sum_scale = 1.0f) const {
1260 1261
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
1262 1263 1264 1265
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
1266 1267 1268 1269 1270 1271
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
1272
      post_operations.append_sum(sum_scale);
1273 1274 1275
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
1276
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
1277 1278
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
1279
                                     fuse_alpha, fuse_beta);
1280
    } else if (fuse_activation == "relu6") {
1281 1282 1283
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
1284
                                     fuse_alpha, fuse_beta);
1285 1286 1287 1288
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
1289
    }
1290 1291 1292 1293 1294 1295 1296 1297
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::shared_ptr<typename forward_t::primitive_desc>
  AcquireConvolutionPrimitiveDescriptor(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
      boost::optional<const mkldnn::memory::desc&> bias,
A
Adam 已提交
1298 1299
      const mkldnn::memory::desc& dst, const std::vector<int64_t>& strides,
      const std::vector<int64_t>& paddings, const mkldnn::engine& engine,
1300 1301
      const std::string& fuse_activation, float fuse_alpha, float fuse_beta,
      const bool fuse_residual_conn, mkldnn::prop_kind fwd_prop_kind,
1302 1303
      const std::vector<float> output_shift_scale = {},
      const float sum_scale = 1.0f) {
1304 1305 1306 1307
    // Conv PD has to be passed to Grad op that
    // may be exxecuted by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_conv_pd = key_common_ + "@conv_pd";
1308

1309
    conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
1310 1311
        dev_ctx_.GetBlob(key_conv_pd));

1312 1313 1314 1315 1316 1317 1318 1319 1320
    if (conv_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);

      conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
          dev_ctx_.GetBlob(key_conv_pd));
      if (conv_pd_ == nullptr) {
        mkldnn::memory::dims stride_dims = strides;
1321 1322

        auto mkldnn_paddings = ToMkldnnPadding(paddings);
1323 1324

        auto conv_desc =
A
Adam 已提交
1325 1326 1327 1328 1329 1330 1331 1332
            bias ? typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
                       src, weights, *bias, dst, stride_dims,
                       mkldnn_paddings[0], mkldnn_paddings[1])
                 : typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
                       src, weights, dst, stride_dims, mkldnn_paddings[0],
                       mkldnn_paddings[1]);
1333

1334
        mkldnn::primitive_attr conv_attr =
1335 1336
            CreatePostOps(fuse_activation, fuse_alpha, fuse_beta,
                          fuse_residual_conn, output_shift_scale, sum_scale);
1337 1338 1339 1340 1341 1342

        conv_pd_.reset(new typename forward_t::primitive_desc(
            conv_desc, conv_attr, engine));
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx_.SetBlob(key_conv_pd, conv_pd_);
      }
1343 1344 1345 1346 1347
    }

    return conv_pd_;
  }

A
Adam 已提交
1348
  std::shared_ptr<forward_t> AcquireConvolution() {
J
Jacek Czaja 已提交
1349 1350 1351 1352
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_p == nullptr) {
A
Adam 已提交
1353
      conv_p = std::make_shared<forward_t>(*conv_pd_);
J
Jacek Czaja 已提交
1354 1355 1356 1357 1358 1359

      dev_ctx_.SetBlob(prim_key, conv_p);
    }
    return conv_p;
  }

A
Adam 已提交
1360
  std::shared_ptr<backward_weights_t> AcquireConvolutionBackwardWeights() {
J
Jacek Czaja 已提交
1361 1362 1363 1364 1365
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p = std::static_pointer_cast<backward_weights_t>(
        dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
A
Adam 已提交
1366 1367
      conv_bwd_weights_p =
          std::make_shared<backward_weights_t>(*conv_bwd_weights_pd_);
J
Jacek Czaja 已提交
1368 1369 1370 1371 1372
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    }
    return conv_bwd_weights_p;
  }

A
Adam 已提交
1373
  std::shared_ptr<backward_data_t> AcquireConvolutionBackwardData() {
J
Jacek Czaja 已提交
1374 1375 1376 1377
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<backward_data_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_data_p == nullptr) {
A
Adam 已提交
1378
      conv_bwd_data_p = std::make_shared<backward_data_t>(*conv_bwd_data_pd_);
J
Jacek Czaja 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    }
    return conv_bwd_data_p;
  }

 private:
  std::shared_ptr<typename forward_t::primitive_desc> conv_pd_;
  std::shared_ptr<typename backward_weights_t::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<typename backward_data_t::primitive_desc> conv_bwd_data_pd_;
};

using ConvMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::convolution_forward,
                              mkldnn::convolution_backward_data,
                              mkldnn::convolution_backward_weights>;

using ConvTransposeMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::deconvolution_forward,
                              mkldnn::deconvolution_backward_data,
                              mkldnn::deconvolution_backward_weights>;
1400

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
  return dst_memory_p;
}

template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const framework::Tensor* residual_param,
    const mkldnn::memory::desc& user_residual_md,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::vector<mkldnn::primitive>* pipeline) {
  const T* residual_param_data = residual_param->data<T>();
1420 1421 1422 1423 1424
  PADDLE_ENFORCE_NOT_NULL(
      residual_param_data,
      platform::errors::PreconditionNotMet("Residual parameter is required for "
                                           "the DNNL conv+elementwise_add "
                                           "fusion, but now it is missing"));
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
  std::shared_ptr<mkldnn::memory> user_residual_memory_p =
      handler->AcquireResidualDataMemory(user_residual_md,
                                         to_void_cast<T>(residual_param_data));
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromResidualDataMemory(
          user_residual_memory_p, to_void_cast<T>(output_data), *pipeline);
  return dst_memory_p;
}

template <typename T>
static void SetDstMemoryHandler(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::shared_ptr<mkldnn::memory> dst_memory_p) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  dst_memory_p->set_data_handle(to_void_cast<T>(output_data));
}

1445 1446 1447
template <typename T>
static void SetDstMemoryQuantized(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
A
Adam 已提交
1448 1449
    std::vector<int64_t> dst_tz, const mkldnn::engine& engine,
    std::shared_ptr<mkldnn::memory::desc>& dst_md,  // NOLINT
1450 1451
    std::shared_ptr<mkldnn::memory>& dst_memory,    // NOLINT
    MKLDNNMemoryFormat output_format) {
1452 1453
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
1454
  MKLDNNMemoryFormat dst_fmt;
G
GaoWei8 已提交
1455 1456 1457 1458
  PADDLE_ENFORCE_LE(dst_dims, 5, platform::errors::InvalidArgument(
                                     "Dst memory for quantization can not have "
                                     "dims > 5. But received dst_dims is %d.",
                                     dst_dims));
1459
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format);
1460

A
Adam 已提交
1461
  auto tmp_dst_md = platform::MKLDNNMemDesc(
1462
      {dst_tz}, paddle::framework::ToMKLDNNDataType(
1463
                    framework::DataTypeTrait<T>::DataType()),
1464
      dst_fmt);
A
Adam 已提交
1465 1466 1467
  dst_md.reset(new mkldnn::memory::desc(tmp_dst_md));
  dst_memory.reset(
      new mkldnn::memory(*dst_md, engine, to_void_cast<T>(output_data)));
1468 1469
}

J
Jacek Czaja 已提交
1470 1471
}  // namespace platform
}  // namespace paddle