cuda_device_function.h 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16

17 18
// NOTE(): support float16 to half in header file.
#define PADDLE_CUDA_FP16
19 20
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
21
#include "paddle/fluid/platform/float16.h"
22 23 24 25

namespace paddle {
namespace platform {

26 27 28
#ifdef PADDLE_WITH_HIP
#define CREATE_SHFL_MASK(mask, predicate) mask = __ballot((predicate))
#else
29 30 31
#define FULL_WARP_MASK 0xFFFFFFFF
#define CREATE_SHFL_MASK(mask, predicate) \
  mask = __ballot_sync(FULL_WARP_MASK, (predicate))
C
chengduoZH 已提交
32 33
#endif

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
inline static int RoundToPowerOfTwo(int dim) {
  if (dim > 512) {
    return 1024;
  } else if (dim > 256) {
    return 512;
  } else if (dim > 128) {
    return 256;
  } else if (dim > 64) {
    return 128;
  } else if (dim > 32) {
    return 64;
  } else {
    return 32;
  }
}

#define CUDA_LAUNCH_KERNEL_BASE(dim, ...)  \
  case (dim): {                            \
    constexpr auto kPowerOfTwoDim = (dim); \
    __VA_ARGS__;                           \
  } break

56 57 58 59 60 61
#define CUDA_LAUNCH_KERNEL_HELPER(...)          \
  CUDA_LAUNCH_KERNEL_BASE(1024, ##__VA_ARGS__); \
  CUDA_LAUNCH_KERNEL_BASE(512, ##__VA_ARGS__);  \
  CUDA_LAUNCH_KERNEL_BASE(256, ##__VA_ARGS__);  \
  CUDA_LAUNCH_KERNEL_BASE(128, ##__VA_ARGS__);  \
  CUDA_LAUNCH_KERNEL_BASE(64, ##__VA_ARGS__);   \
62 63
  CUDA_LAUNCH_KERNEL_BASE(32, ##__VA_ARGS__);

C
chengduoZH 已提交
64
template <typename T>
C
chengduoZH 已提交
65
__forceinline__ __device__ T CudaShuffleDownSync(unsigned mask, T val,
66 67
                                                 int delta,
                                                 int width = warpSize) {
T
tianshuo78520a 已提交
68
#if defined(PADDLE_WITH_HIP)
C
chengduoZH 已提交
69 70
  return __shfl_down(val, delta, width);
#else
71
  return __shfl_down_sync(mask, val, static_cast<unsigned>(delta), width);
C
chengduoZH 已提交
72
#endif
C
chengduoZH 已提交
73 74
}

75 76 77
template <typename T>
__forceinline__ __device__ T CudaShuffleXorSync(unsigned mask, T val,
                                                int width = warpSize) {
T
tianshuo78520a 已提交
78
#if defined(PADDLE_WITH_HIP)
79 80 81 82 83 84
  return __shfl_xor(val, width);
#else
  return __shfl_xor_sync(mask, val, width);
#endif
}

85
// CUDA 9.0 have native compatible float16 shfl_down
T
tianshuo78520a 已提交
86
#if defined(PADDLE_WITH_HIP)
87 88 89 90
template <>
__forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask,
                                                       float16 val, int delta,
                                                       int width) {
91 92 93 94
#ifdef PADDLE_WITH_HIP
  return float16(__shfl_down(static_cast<float>(val),
                             static_cast<unsigned>(delta), width));
#else
95 96
  return float16(
      __shfl_down(static_cast<half>(val), static_cast<unsigned>(delta), width));
97
#endif
98
}
99 100 101
template <>
__forceinline__ __device__ float16 CudaShuffleXorSync(unsigned mask,
                                                      float16 val, int width) {
102 103 104
#ifdef PADDLE_WITH_HIP
  return float16(__shfl_xor(static_cast<float>(val), width));
#else
105
  return float16(__shfl_xor(static_cast<half>(val), width));
106
#endif
107
}
108 109 110 111 112 113 114
#else
template <>
__forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask,
                                                       float16 val, int delta,
                                                       int width) {
  return float16(__shfl_down_sync(mask, static_cast<half>(val),
                                  static_cast<unsigned>(delta), width));
115
}
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

template <>
__forceinline__ __device__ paddle::platform::complex64 CudaShuffleDownSync(
    unsigned mask, paddle::platform::complex64 val, int delta, int width) {
  float real = static_cast<float>(__shfl_down_sync(
      mask, static_cast<float>(val.real), static_cast<unsigned>(delta), width));
  float imag = static_cast<float>(__shfl_down_sync(
      mask, static_cast<float>(val.imag), static_cast<unsigned>(delta), width));
  return paddle::platform::complex64(real, imag);
}

template <>
__forceinline__ __device__ paddle::platform::complex128 CudaShuffleDownSync(
    unsigned mask, paddle::platform::complex128 val, int delta, int width) {
  double real = static_cast<double>(
      __shfl_down_sync(mask, static_cast<double>(val.real),
                       static_cast<unsigned>(delta), width));
  double imag = static_cast<double>(
      __shfl_down_sync(mask, static_cast<double>(val.imag),
                       static_cast<unsigned>(delta), width));
  return paddle::platform::complex128(real, imag);
}

139 140 141 142 143
template <>
__forceinline__ __device__ float16 CudaShuffleXorSync(unsigned mask,
                                                      float16 val, int width) {
  return float16(__shfl_xor_sync(mask, static_cast<half>(val), width));
}
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

template <>
__forceinline__ __device__ paddle::platform::complex64 CudaShuffleXorSync(
    unsigned mask, paddle::platform::complex64 val, int width) {
  float real = static_cast<float>(
      __shfl_xor_sync(mask, static_cast<float>(val.real), width));
  float imag = static_cast<float>(
      __shfl_xor_sync(mask, static_cast<float>(val.imag), width));
  return paddle::platform::complex64(real, imag);
}

template <>
__forceinline__ __device__ paddle::platform::complex128 CudaShuffleXorSync(
    unsigned mask, paddle::platform::complex128 val, int width) {
  double real = static_cast<double>(
      __shfl_xor_sync(mask, static_cast<double>(val.real), width));
  double imag = static_cast<double>(
      __shfl_xor_sync(mask, static_cast<double>(val.imag), width));
  return paddle::platform::complex128(real, imag);
}
164 165
#endif

C
chengduoZH 已提交
166
template <typename T>
C
chengduoZH 已提交
167 168
__forceinline__ __device__ T CudaShuffleSync(unsigned mask, T val, int src_line,
                                             int width = 32) {
T
tianshuo78520a 已提交
169
#if defined(PADDLE_WITH_HIP)
C
chengduoZH 已提交
170 171
  return __shfl(val, src_line, width);
#else
C
chengduoZH 已提交
172
  return __shfl_sync(mask, val, src_line, width);
173
#endif
C
chengduoZH 已提交
174
}
175 176

template <typename T>
177 178 179 180 181
HOSTDEVICE T Infinity() {
  return INFINITY;
}

template <typename T>
182
__device__ T reduceSum(T val, int tid, int len) {
183 184 185 186 187 188 189 190 191
// NOTE(zcd): The warp size should be taken from the
// parameters of the GPU but not specified as 32 simply.
// To make the reduceSum more efficiently,
// I use Warp-Level Parallelism and assume the Warp size
// is 32 which may be different for different GPU,
// but most card's warp size is 32.
#ifdef PADDLE_WITH_HIP
  const int warpSize = 64;
#else
192
  const int warpSize = 32;
193
#endif
194 195 196 197 198
  __shared__ T shm[warpSize];
  unsigned mask = 0u;
  CREATE_SHFL_MASK(mask, tid < len);

  for (int offset = warpSize / 2; offset > 0; offset /= 2)
C
chengduoZH 已提交
199
    val += platform::CudaShuffleDownSync(mask, val, offset);
200 201

  if (tid < warpSize) shm[tid] = 0;
C
chengduoZH 已提交
202
  __syncthreads();
203 204 205 206 207 208 209 210 211 212 213

  if (tid % warpSize == 0) {
    shm[tid / warpSize] = val;
  }
  __syncthreads();

  CREATE_SHFL_MASK(mask, tid < warpSize);

  if (tid < warpSize) {
    val = shm[tid];
    for (int offset = warpSize / 2; offset > 0; offset /= 2)
C
chengduoZH 已提交
214
      val += platform::CudaShuffleDownSync(mask, val, offset);
215 216 217 218 219 220
  }
  return val;
}

}  // namespace platform
}  // namespace paddle