test_expand_op.py 6.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
yangyaming 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
L
liym27 已提交
20
import paddle.fluid as fluid
Y
yangyaming 已提交
21 22


L
liym27 已提交
23
# Situation 1: expand_times is a list(without tensor)
Y
yangyaming 已提交
24 25 26
class TestExpandOpRank1(OpTest):
    def setUp(self):
        self.op_type = "expand"
L
liym27 已提交
27 28 29 30 31
        self.init_data()

        self.inputs = {'X': np.random.random(self.ori_shape).astype("float32")}
        self.attrs = {'expand_times': self.expand_times}
        output = np.tile(self.inputs['X'], self.expand_times)
Y
yangyaming 已提交
32 33
        self.outputs = {'Out': output}

L
liym27 已提交
34 35 36 37
    def init_data(self):
        self.ori_shape = [12]
        self.expand_times = [2]

Y
yangyaming 已提交
38 39 40 41 42 43 44
    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


L
liym27 已提交
45 46 47 48
class TestExpandOpRank2_Corner(TestExpandOpRank1):
    def init_data(self):
        self.ori_shape = [12]
        self.expand_times = [2]
49 50


L
liym27 已提交
51 52 53 54
class TestExpandOpRank2(TestExpandOpRank1):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.expand_times = [2, 3]
55 56


L
liym27 已提交
57 58 59 60
class TestExpandOpRank3_Corner(TestExpandOpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 5)
        self.expand_times = (1, 1, 1)
Y
yangyaming 已提交
61 62


L
liym27 已提交
63 64 65 66 67
class TestExpandOpRank3(TestExpandOpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 5)
        self.expand_times = (2, 1, 4)

Y
yangyaming 已提交
68

L
liym27 已提交
69 70 71 72
class TestExpandOpRank4(TestExpandOpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 5, 7)
        self.expand_times = (3, 2, 1, 2)
Y
yangyaming 已提交
73

L
liym27 已提交
74 75 76

# Situation 2: expand_times is a list(with tensor)
class TestExpandOpRank1_tensor_attr(OpTest):
77 78
    def setUp(self):
        self.op_type = "expand"
L
liym27 已提交
79 80 81 82 83 84
        self.init_data()
        expand_times_tensor = []
        for index, ele in enumerate(self.expand_times):
            expand_times_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

85
        self.inputs = {
L
liym27 已提交
86 87
            'X': np.random.random(self.ori_shape).astype("float32"),
            'expand_times_tensor': expand_times_tensor,
88
        }
L
liym27 已提交
89 90
        self.attrs = {"expand_times": self.infer_expand_times}
        output = np.tile(self.inputs['X'], self.expand_times)
91 92
        self.outputs = {'Out': output}

L
liym27 已提交
93 94 95 96 97
    def init_data(self):
        self.ori_shape = [12]
        self.expand_times = [2]
        self.infer_expand_times = [-1]

98 99 100 101 102 103 104
    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


L
liym27 已提交
105 106 107 108 109
class TestExpandOpRank2_Corner_tensor_attr(TestExpandOpRank1_tensor_attr):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.expand_times = [1, 1]
        self.infer_expand_times = [1, -1]
Y
yangyaming 已提交
110 111


L
liym27 已提交
112 113 114 115 116
class TestExpandOpRank2_attr_tensor(TestExpandOpRank1_tensor_attr):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.expand_times = [2, 3]
        self.infer_expand_times = [-1, 3]
Y
yangyaming 已提交
117 118


L
liym27 已提交
119 120
# Situation 3: expand_times is a tensor
class TestExpandOpRank1_tensor(OpTest):
121 122
    def setUp(self):
        self.op_type = "expand"
L
liym27 已提交
123 124
        self.init_data()

125
        self.inputs = {
L
liym27 已提交
126 127
            'X': np.random.random(self.ori_shape).astype("float32"),
            'ExpandTimes': np.array(self.expand_times).astype("int32"),
128 129
        }
        self.attrs = {}
L
liym27 已提交
130
        output = np.tile(self.inputs['X'], self.expand_times)
131 132
        self.outputs = {'Out': output}

L
liym27 已提交
133 134 135
    def init_data(self):
        self.ori_shape = [12]
        self.expand_times = [2]
Y
yangyaming 已提交
136 137 138 139 140 141 142 143

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


L
liym27 已提交
144 145 146 147
class TestExpandOpRank2_tensor(TestExpandOpRank1_tensor):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.expand_times = [2, 3]
Y
yangyaming 已提交
148 149


L
liym27 已提交
150
# Situation 4: input x is Integer
151 152 153
class TestExpandOpInteger(OpTest):
    def setUp(self):
        self.op_type = "expand"
J
jerrywgz 已提交
154 155 156 157
        self.inputs = {
            'X': np.random.randint(
                10, size=(2, 4, 5)).astype("int32")
        }
158 159 160 161 162 163 164 165
        self.attrs = {'expand_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


L
liym27 已提交
166
# Situation 5: input x is Bool
167 168 169
class TestExpandOpBoolean(OpTest):
    def setUp(self):
        self.op_type = "expand"
J
jerrywgz 已提交
170
        self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
171 172 173 174 175 176 177 178
        self.attrs = {'expand_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


L
liym27 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
# Test python API
class TestExpandAPI(OpTest):
    def test_api(self):
        input = np.random.random([12, 14]).astype("float32")
        x = fluid.layers.data(
            name='x', shape=[12, 14], append_batch_size=False, dtype="float32")

        positive_2 = fluid.layers.fill_constant([1], "int32", 2)
        expand_times = fluid.layers.data(
            name="expand_times", shape=[2], append_batch_size=False)

        out_1 = fluid.layers.expand(x, expand_times=[2, 3])
        out_2 = fluid.layers.expand(x, expand_times=[positive_2, 3])
        out_3 = fluid.layers.expand(x, expand_times=expand_times)

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3 = exe.run(fluid.default_main_program(),
                                      feed={
                                          "x": input,
                                          "expand_times":
                                          np.array([1, 3]).astype("int32")
                                      },
                                      fetch_list=[out_1, out_2, out_3])
        assert np.array_equal(res_1, np.tile(input, (2, 3)))
        assert np.array_equal(res_2, np.tile(input, (2, 3)))
        assert np.array_equal(res_3, np.tile(input, (1, 3)))


Y
yangyaming 已提交
207 208
if __name__ == "__main__":
    unittest.main()