api_custom_impl.cc 4.5 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/api_custom_impl.h"
16

17 18 19 20 21 22 23
#include "paddle/phi/api/lib/api_registry.h"
#include "paddle/phi/api/lib/api_utils.h"
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/api/lib/utils/storage.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/meta_tensor.h"
24 25 26
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
27
#include "paddle/phi/infermeta/unary.h"
28

29
#include "glog/logging.h"
30

31 32 33
namespace paddle {
namespace experimental {

34
Tensor copy_to_impl(const Tensor& x, Backend backend, bool blocking) {
35 36
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
  kernel_key_set.backend_set = kernel_key_set.backend_set | BackendSet(backend);
37
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
38
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
39 40
      "copy", kernel_key);

41 42
  VLOG(6) << "copy API kernel key: " << kernel_key;
  VLOG(6) << "copy API kernel: " << kernel;
43 44 45

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

46
  auto dense_x = TensorToDenseTensor(x);
47 48

  Tensor out;
49 50 51 52 53 54 55 56 57
  auto kernel_out = SetKernelOutput(kernel_key.backend(), &out);
  phi::MetaTensor meta_out(kernel_out);
  phi::UnchangedInferMeta(*dense_x, &meta_out);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    phi::Place,
                                    bool,
                                    phi::DenseTensor*);
58

59 60
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(
61
      *dev_ctx, *dense_x, phi::TransToPhiPlace(backend), blocking, kernel_out);
62 63 64 65

  return out;
}

66 67 68 69
std::vector<Tensor> split_impl(const Tensor& x,
                               const ScalarArray& num_or_sections,
                               const Scalar& axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
70
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
71 72 73 74

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();
C
chentianyu03 已提交
75

76
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
C
chentianyu03 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
      "split", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "split API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "split API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_x = PrepareData(x, kernel.InputAt(0), {});

  // Calculate the number of out tensors
  size_t out_number;
  if (num_or_sections.GetData().size() == 1) {
    out_number = num_or_sections.GetData()[0];
  } else {
    out_number = num_or_sections.GetData().size();
  }

  std::vector<Tensor> out;
  auto dense_outs = SetKernelOutput(out_number, kernel_backend, &out);
96
  std::vector<phi::MetaTensor> meta_outs;
97 98 99
  meta_outs.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_out_ptrs;
  meta_out_ptrs.reserve(out_number);
C
chentianyu03 已提交
100 101
  for (size_t i = 0; i < out_number; ++i) {
    meta_outs.push_back(dense_outs[i]);
102
    meta_out_ptrs.push_back(&meta_outs.back());
C
chentianyu03 已提交
103 104
  }

105
  phi::SplitInferMeta(
106
      MakeMetaTensor(*dense_x), num_or_sections, axis, meta_out_ptrs);
C
chentianyu03 已提交
107 108

  using kernel_signature = void (*)(const platform::DeviceContext&,
109 110 111 112
                                    const phi::DenseTensor&,
                                    const phi::ScalarArray&,
                                    const phi::Scalar&,
                                    std::vector<phi::DenseTensor*>&);
C
chentianyu03 已提交
113 114 115
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx,
               *dense_x,
116 117
               phi::ScalarArray(num_or_sections),
               phi::Scalar(axis),
C
chentianyu03 已提交
118 119 120 121
               dense_outs);

  return out;
}
122

123 124
}  // namespace experimental
}  // namespace paddle