inference_api.cc 31.2 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/pybind/inference_api.h"
16
#include <pybind11/numpy.h>
F
flame 已提交
17 18
#include <pybind11/stl.h>
#include <cstring>
19
#include <functional>
F
flame 已提交
20
#include <iostream>
21
#include <iterator>
22
#include <map>
23
#include <memory>
F
flame 已提交
24
#include <string>
25
#include <type_traits>
26
#include <unordered_set>
27
#include <utility>
F
flame 已提交
28 29
#include <vector>
#include "paddle/fluid/inference/api/analysis_predictor.h"
30
#include "paddle/fluid/inference/api/helper.h"
31
#include "paddle/fluid/inference/api/paddle_infer_contrib.h"
F
flame 已提交
32
#include "paddle/fluid/inference/api/paddle_inference_api.h"
33
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
34
#include "paddle/fluid/inference/utils/io_utils.h"
F
flame 已提交
35 36 37

namespace py = pybind11;

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
namespace pybind11 {
namespace detail {

// Note: use same enum number of float16 in numpy.
// import numpy as np
// print np.dtype(np.float16).num  # 23
constexpr int NPY_FLOAT16_ = 23;
constexpr int NPY_UINT16_ = 4;

// Note: Since float16 is not a builtin type in C++, we register
// paddle::platform::float16 as numpy.float16.
// Ref: https://github.com/pybind/pybind11/issues/1776
template <>
struct npy_format_descriptor<paddle_infer::float16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "e" represents float16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "e";
  }
  static constexpr auto name = _("float16");
};

}  // namespace detail
}  // namespace pybind11

F
flame 已提交
68 69
namespace paddle {
namespace pybind {
70 71 72
using paddle::AnalysisPredictor;
using paddle::NativeConfig;
using paddle::NativePaddlePredictor;
F
flame 已提交
73
using paddle::PaddleBuf;
74 75
using paddle::PaddleDType;
using paddle::PaddlePassBuilder;
F
flame 已提交
76 77
using paddle::PaddlePlace;
using paddle::PaddlePredictor;
78 79 80
using paddle::PaddleTensor;
using paddle::PassStrategy;
using paddle::ZeroCopyTensor;
F
flame 已提交
81

82 83 84 85 86 87 88 89 90 91
namespace {
void BindPaddleDType(py::module *m);
void BindPaddleBuf(py::module *m);
void BindPaddleTensor(py::module *m);
void BindPaddlePlace(py::module *m);
void BindPaddlePredictor(py::module *m);
void BindNativeConfig(py::module *m);
void BindNativePredictor(py::module *m);
void BindAnalysisConfig(py::module *m);
void BindAnalysisPredictor(py::module *m);
92 93
void BindZeroCopyTensor(py::module *m);
void BindPaddlePassBuilder(py::module *m);
W
Wilber 已提交
94 95 96
void BindPaddleInferPredictor(py::module *m);
void BindPaddleInferTensor(py::module *m);
void BindPredictorPool(py::module *m);
F
flame 已提交
97

98
#ifdef PADDLE_WITH_MKLDNN
99
void BindMkldnnQuantizerConfig(py::module *m);
100
#endif
101 102

template <typename T>
103 104
PaddleBuf PaddleBufCreate(
    py::array_t<T, py::array::c_style | py::array::forcecast> data) {
105
  PaddleBuf buf(data.size() * sizeof(T));
106
  std::copy_n(static_cast<const T *>(data.data()), data.size(),
107 108 109 110 111
              static_cast<T *>(buf.data()));
  return buf;
}

template <typename T>
112 113 114
void PaddleBufReset(
    PaddleBuf &buf,                                                    // NOLINT
    py::array_t<T, py::array::c_style | py::array::forcecast> data) {  // NOLINT
115
  buf.Resize(data.size() * sizeof(T));
116
  std::copy_n(static_cast<const T *>(data.data()), data.size(),
117 118 119 120 121
              static_cast<T *>(buf.data()));
}

template <typename T>
PaddleTensor PaddleTensorCreate(
122 123
    py::array_t<T, py::array::c_style | py::array::forcecast> data,
    const std::string name = "",
124 125 126 127 128
    const std::vector<std::vector<size_t>> &lod = {}, bool copy = true) {
  PaddleTensor tensor;

  if (copy) {
    PaddleBuf buf(data.size() * sizeof(T));
129
    std::copy_n(static_cast<const T *>(data.data()), data.size(),
130 131 132 133 134 135
                static_cast<T *>(buf.data()));
    tensor.data = std::move(buf);
  } else {
    tensor.data = PaddleBuf(data.mutable_data(), data.size() * sizeof(T));
  }

136
  tensor.dtype = inference::PaddleTensorGetDType<T>();
137 138 139 140 141 142 143 144
  tensor.name = name;
  tensor.lod = lod;
  tensor.shape.resize(data.ndim());
  std::copy_n(data.shape(), data.ndim(), tensor.shape.begin());

  return tensor;
}

145
py::dtype PaddleDTypeToNumpyDType(PaddleDType dtype) {
146
  py::dtype dt;
147
  switch (dtype) {
148 149 150 151 152 153 154 155 156
    case PaddleDType::INT32:
      dt = py::dtype::of<int32_t>();
      break;
    case PaddleDType::INT64:
      dt = py::dtype::of<int64_t>();
      break;
    case PaddleDType::FLOAT32:
      dt = py::dtype::of<float>();
      break;
W
Wilber 已提交
157 158 159
    case PaddleDType::UINT8:
      dt = py::dtype::of<uint8_t>();
      break;
160 161 162
    case PaddleDType::FLOAT16:
      dt = py::dtype::of<paddle_infer::float16>();
      break;
163
    default:
164
      PADDLE_THROW(platform::errors::Unimplemented(
W
Wilber 已提交
165
          "Unsupported data type. Now only supports INT32, INT64, UINT8 and "
166
          "FLOAT32."));
167
  }
168 169 170 171 172 173 174 175 176 177

  return dt;
}

py::array PaddleTensorGetData(PaddleTensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.dtype);
  return py::array(std::move(dt), {tensor.shape}, tensor.data.data());
}

template <typename T>
178 179 180
void ZeroCopyTensorCreate(
    ZeroCopyTensor &tensor,  // NOLINT
    py::array_t<T, py::array::c_style | py::array::forcecast> data) {
181 182 183 184 185 186
  std::vector<int> shape;
  std::copy_n(data.shape(), data.ndim(), std::back_inserter(shape));
  tensor.Reshape(std::move(shape));
  tensor.copy_from_cpu(static_cast<const T *>(data.data()));
}

W
Wilber 已提交
187
template <typename T>
188 189 190
void PaddleInferTensorCreate(
    paddle_infer::Tensor &tensor,  // NOLINT
    py::array_t<T, py::array::c_style | py::array::forcecast> data) {
W
Wilber 已提交
191 192 193 194 195 196
  std::vector<int> shape;
  std::copy_n(data.shape(), data.ndim(), std::back_inserter(shape));
  tensor.Reshape(std::move(shape));
  tensor.CopyFromCpu(static_cast<const T *>(data.data()));
}

197 198 199 200 201 202 203 204 205 206 207 208 209
size_t PaddleGetDTypeSize(PaddleDType dt) {
  size_t size{0};
  switch (dt) {
    case PaddleDType::INT32:
      size = sizeof(int32_t);
      break;
    case PaddleDType::INT64:
      size = sizeof(int64_t);
      break;
    case PaddleDType::FLOAT32:
      size = sizeof(float);
      break;
    default:
210 211 212
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported data type. Now only supports INT32, INT64 and "
          "FLOAT32."));
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
  }
  return size;
}

py::array ZeroCopyTensorToNumpy(ZeroCopyTensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.type());
  auto tensor_shape = tensor.shape();
  py::array::ShapeContainer shape(tensor_shape.begin(), tensor_shape.end());
  py::array array(dt, std::move(shape));

  switch (tensor.type()) {
    case PaddleDType::INT32:
      tensor.copy_to_cpu(static_cast<int32_t *>(array.mutable_data()));
      break;
    case PaddleDType::INT64:
      tensor.copy_to_cpu(static_cast<int64_t *>(array.mutable_data()));
      break;
    case PaddleDType::FLOAT32:
      tensor.copy_to_cpu<float>(static_cast<float *>(array.mutable_data()));
      break;
233 234 235 236
    case PaddleDType::FLOAT16:
      tensor.copy_to_cpu<paddle::platform::float16>(
          static_cast<paddle::platform::float16 *>(array.mutable_data()));
      break;
W
Wilber 已提交
237 238 239
    case PaddleDType::UINT8:
      tensor.copy_to_cpu<uint8_t>(static_cast<uint8_t *>(array.mutable_data()));
      break;
240 241 242
    case PaddleDType::INT8:
      tensor.copy_to_cpu<int8_t>(static_cast<int8_t *>(array.mutable_data()));
      break;
243
    default:
244
      PADDLE_THROW(platform::errors::Unimplemented(
W
Wilber 已提交
245
          "Unsupported data type. Now only supports INT32, INT64, UINT8 and "
246
          "FLOAT32."));
247 248
  }
  return array;
249
}
250

W
Wilber 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
py::array PaddleInferTensorToNumpy(paddle_infer::Tensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.type());
  auto tensor_shape = tensor.shape();
  py::array::ShapeContainer shape(tensor_shape.begin(), tensor_shape.end());
  py::array array(dt, std::move(shape));

  switch (tensor.type()) {
    case PaddleDType::INT32:
      tensor.CopyToCpu(static_cast<int32_t *>(array.mutable_data()));
      break;
    case PaddleDType::INT64:
      tensor.CopyToCpu(static_cast<int64_t *>(array.mutable_data()));
      break;
    case PaddleDType::FLOAT32:
      tensor.CopyToCpu<float>(static_cast<float *>(array.mutable_data()));
      break;
267 268 269 270
    case PaddleDType::FLOAT16:
      tensor.CopyToCpu<paddle::platform::float16>(
          static_cast<paddle::platform::float16 *>(array.mutable_data()));
      break;
271 272 273 274 275 276
    case PaddleDType::UINT8:
      tensor.CopyToCpu(static_cast<uint8_t *>(array.mutable_data()));
      break;
    case PaddleDType::INT8:
      tensor.CopyToCpu(static_cast<int8_t *>(array.mutable_data()));
      break;
W
Wilber 已提交
277 278 279 280 281 282 283 284
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported data type. Now only supports INT32, INT64 and "
          "FLOAT32."));
  }
  return array;
}

285 286 287 288 289
py::bytes SerializePDTensorToBytes(PaddleTensor &tensor) {  // NOLINT
  std::stringstream ss;
  paddle::inference::SerializePDTensorToStream(&ss, tensor);
  return static_cast<py::bytes>(ss.str());
}
290 291 292 293 294 295

void CopyPaddleInferTensor(paddle_infer::Tensor &dst,
                           const paddle_infer::Tensor &src) {
  return paddle_infer::contrib::TensorUtils::CopyTensor(&dst, src);
}

296
}  // namespace
297

F
flame 已提交
298 299 300 301 302 303 304 305 306 307
void BindInferenceApi(py::module *m) {
  BindPaddleDType(m);
  BindPaddleBuf(m);
  BindPaddleTensor(m);
  BindPaddlePlace(m);
  BindPaddlePredictor(m);
  BindNativeConfig(m);
  BindNativePredictor(m);
  BindAnalysisConfig(m);
  BindAnalysisPredictor(m);
W
Wilber 已提交
308
  BindPaddleInferPredictor(m);
309
  BindZeroCopyTensor(m);
W
Wilber 已提交
310
  BindPaddleInferTensor(m);
311
  BindPaddlePassBuilder(m);
W
Wilber 已提交
312
  BindPredictorPool(m);
313 314 315
#ifdef PADDLE_WITH_MKLDNN
  BindMkldnnQuantizerConfig(m);
#endif
F
flame 已提交
316
  m->def("create_paddle_predictor",
W
Wilber 已提交
317
         &paddle::CreatePaddlePredictor<AnalysisConfig>, py::arg("config"));
F
flame 已提交
318
  m->def("create_paddle_predictor",
W
Wilber 已提交
319
         &paddle::CreatePaddlePredictor<NativeConfig>, py::arg("config"));
W
Wilber 已提交
320 321 322 323 324 325 326
  m->def("create_predictor", [](const paddle_infer::Config &config)
                                 -> std::unique_ptr<paddle_infer::Predictor> {
                                   auto pred =
                                       std::unique_ptr<paddle_infer::Predictor>(
                                           new paddle_infer::Predictor(config));
                                   return std::move(pred);
                                 });
327
  m->def("copy_tensor", &CopyPaddleInferTensor);
F
flame 已提交
328
  m->def("paddle_dtype_size", &paddle::PaddleDtypeSize);
329
  m->def("paddle_tensor_to_bytes", &SerializePDTensorToBytes);
W
Wilber 已提交
330 331
  m->def("get_version", &paddle_infer::GetVersion);
  m->def("get_num_bytes_of_data_type", &paddle_infer::GetNumBytesOfDataType);
F
flame 已提交
332 333
}

334
namespace {
F
flame 已提交
335 336 337
void BindPaddleDType(py::module *m) {
  py::enum_<PaddleDType>(*m, "PaddleDType")
      .value("FLOAT32", PaddleDType::FLOAT32)
338 339
      .value("INT64", PaddleDType::INT64)
      .value("INT32", PaddleDType::INT32);
F
flame 已提交
340 341 342 343 344 345 346 347
}

void BindPaddleBuf(py::module *m) {
  py::class_<PaddleBuf>(*m, "PaddleBuf")
      .def(py::init<size_t>())
      .def(py::init([](std::vector<float> &data) {
        auto buf = PaddleBuf(data.size() * sizeof(float));
        std::memcpy(buf.data(), static_cast<void *>(data.data()), buf.length());
G
Gabor Buella 已提交
348
        return buf;
F
flame 已提交
349
      }))
350 351 352
      .def(py::init(&PaddleBufCreate<int32_t>))
      .def(py::init(&PaddleBufCreate<int64_t>))
      .def(py::init(&PaddleBufCreate<float>))
F
flame 已提交
353 354 355 356 357 358
      .def("resize", &PaddleBuf::Resize)
      .def("reset",
           [](PaddleBuf &self, std::vector<float> &data) {
             self.Resize(data.size() * sizeof(float));
             std::memcpy(self.data(), data.data(), self.length());
           })
359 360 361
      .def("reset", &PaddleBufReset<int32_t>)
      .def("reset", &PaddleBufReset<int64_t>)
      .def("reset", &PaddleBufReset<float>)
362
      .def("empty", &PaddleBuf::empty)
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
      .def("tolist",
           [](PaddleBuf &self, const std::string &dtype) -> py::list {
             py::list l;
             if (dtype == "int32") {
               auto *data = static_cast<int32_t *>(self.data());
               auto size = self.length() / sizeof(int32_t);
               l = py::cast(std::vector<int32_t>(data, data + size));
             } else if (dtype == "int64") {
               auto *data = static_cast<int64_t *>(self.data());
               auto size = self.length() / sizeof(int64_t);
               l = py::cast(std::vector<int64_t>(data, data + size));
             } else if (dtype == "float32") {
               auto *data = static_cast<float *>(self.data());
               auto size = self.length() / sizeof(float);
               l = py::cast(std::vector<float>(data, data + size));
             } else {
379 380 381
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Unsupported data type. Now only supports INT32, INT64 and "
                   "FLOAT32."));
382 383 384
             }
             return l;
           })
F
flame 已提交
385 386 387 388 389 390 391 392 393 394
      .def("float_data",
           [](PaddleBuf &self) -> std::vector<float> {
             auto *data = static_cast<float *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
           })
      .def("int64_data",
           [](PaddleBuf &self) -> std::vector<int64_t> {
             int64_t *data = static_cast<int64_t *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
           })
395 396 397 398
      .def("int32_data",
           [](PaddleBuf &self) -> std::vector<int32_t> {
             int32_t *data = static_cast<int32_t *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
F
flame 已提交
399 400 401 402 403 404 405
           })
      .def("length", &PaddleBuf::length);
}

void BindPaddleTensor(py::module *m) {
  py::class_<PaddleTensor>(*m, "PaddleTensor")
      .def(py::init<>())
406 407 408 409 410 411 412 413 414 415 416 417 418
      .def(py::init(&PaddleTensorCreate<int32_t>), py::arg("data"),
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
      .def(py::init(&PaddleTensorCreate<int64_t>), py::arg("data"),
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
      .def(py::init(&PaddleTensorCreate<float>), py::arg("data"),
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
      .def("as_ndarray", &PaddleTensorGetData)
F
flame 已提交
419 420 421 422 423 424 425 426 427 428 429
      .def_readwrite("name", &PaddleTensor::name)
      .def_readwrite("shape", &PaddleTensor::shape)
      .def_readwrite("data", &PaddleTensor::data)
      .def_readwrite("dtype", &PaddleTensor::dtype)
      .def_readwrite("lod", &PaddleTensor::lod);
}

void BindPaddlePlace(py::module *m) {
  py::enum_<PaddlePlace>(*m, "PaddlePlace")
      .value("UNK", PaddlePlace::kUNK)
      .value("CPU", PaddlePlace::kCPU)
430
      .value("GPU", PaddlePlace::kGPU)
W
Wilber 已提交
431 432
      .value("XPU", PaddlePlace::kXPU)
      .value("NPU", PaddlePlace::kNPU);
F
flame 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445
}

void BindPaddlePredictor(py::module *m) {
  auto paddle_predictor = py::class_<PaddlePredictor>(*m, "PaddlePredictor");
  paddle_predictor
      .def("run",
           [](PaddlePredictor &self, const std::vector<PaddleTensor> &inputs) {
             std::vector<PaddleTensor> outputs;
             self.Run(inputs, &outputs);
             return outputs;
           })
      .def("get_input_tensor", &PaddlePredictor::GetInputTensor)
      .def("get_output_tensor", &PaddlePredictor::GetOutputTensor)
446 447
      .def("get_input_names", &PaddlePredictor::GetInputNames)
      .def("get_output_names", &PaddlePredictor::GetOutputNames)
F
flame 已提交
448
      .def("zero_copy_run", &PaddlePredictor::ZeroCopyRun)
449 450
      .def("clone", &PaddlePredictor::Clone)
      .def("get_serialized_program", &PaddlePredictor::GetSerializedProgram);
F
flame 已提交
451 452 453 454 455 456 457 458 459 460

  auto config = py::class_<PaddlePredictor::Config>(paddle_predictor, "Config");
  config.def(py::init<>())
      .def_readwrite("model_dir", &PaddlePredictor::Config::model_dir);
}

void BindNativeConfig(py::module *m) {
  py::class_<NativeConfig, PaddlePredictor::Config>(*m, "NativeConfig")
      .def(py::init<>())
      .def_readwrite("use_gpu", &NativeConfig::use_gpu)
461
      .def_readwrite("use_xpu", &NativeConfig::use_xpu)
W
Wilber 已提交
462
      .def_readwrite("use_npu", &NativeConfig::use_npu)
F
flame 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
      .def_readwrite("device", &NativeConfig::device)
      .def_readwrite("fraction_of_gpu_memory",
                     &NativeConfig::fraction_of_gpu_memory)
      .def_readwrite("prog_file", &NativeConfig::prog_file)
      .def_readwrite("param_file", &NativeConfig::param_file)
      .def_readwrite("specify_input_name", &NativeConfig::specify_input_name)
      .def("set_cpu_math_library_num_threads",
           &NativeConfig::SetCpuMathLibraryNumThreads)
      .def("cpu_math_library_num_threads",
           &NativeConfig::cpu_math_library_num_threads);
}

void BindNativePredictor(py::module *m) {
  py::class_<NativePaddlePredictor, PaddlePredictor>(*m,
                                                     "NativePaddlePredictor")
      .def(py::init<const NativeConfig &>())
      .def("init", &NativePaddlePredictor::Init)
      .def("run",
           [](NativePaddlePredictor &self,
              const std::vector<PaddleTensor> &inputs) {
             std::vector<PaddleTensor> outputs;
             self.Run(inputs, &outputs);
             return outputs;
           })
      .def("get_input_tensor", &NativePaddlePredictor::GetInputTensor)
      .def("get_output_tensor", &NativePaddlePredictor::GetOutputTensor)
      .def("zero_copy_run", &NativePaddlePredictor::ZeroCopyRun)
      .def("clone", &NativePaddlePredictor::Clone)
      .def("scope", &NativePaddlePredictor::scope,
           py::return_value_policy::reference);
}

void BindAnalysisConfig(py::module *m) {
496 497 498 499 500
  py::class_<AnalysisConfig> analysis_config(*m, "AnalysisConfig");

  py::enum_<AnalysisConfig::Precision>(analysis_config, "Precision")
      .value("Float32", AnalysisConfig::Precision::kFloat32)
      .value("Int8", AnalysisConfig::Precision::kInt8)
Z
Zhaolong Xing 已提交
501
      .value("Half", AnalysisConfig::Precision::kHalf)
502 503
      .export_values();

504 505
  analysis_config.def(py::init<>())
      .def(py::init<const AnalysisConfig &>())
F
flame 已提交
506 507
      .def(py::init<const std::string &>())
      .def(py::init<const std::string &, const std::string &>())
508
      .def("summary", &AnalysisConfig::Summary)
F
flame 已提交
509 510 511 512 513 514 515 516 517 518 519 520
      .def("set_model", (void (AnalysisConfig::*)(const std::string &)) &
                            AnalysisConfig::SetModel)
      .def("set_model", (void (AnalysisConfig::*)(const std::string &,
                                                  const std::string &)) &
                            AnalysisConfig::SetModel)
      .def("set_prog_file", &AnalysisConfig::SetProgFile)
      .def("set_params_file", &AnalysisConfig::SetParamsFile)
      .def("model_dir", &AnalysisConfig::model_dir)
      .def("prog_file", &AnalysisConfig::prog_file)
      .def("params_file", &AnalysisConfig::params_file)
      .def("enable_use_gpu", &AnalysisConfig::EnableUseGpu,
           py::arg("memory_pool_init_size_mb"), py::arg("device_id") = 0)
521
      .def("enable_xpu", &AnalysisConfig::EnableXpu,
W
Wilber 已提交
522 523 524 525
           py::arg("l3_workspace_size") = 16 * 1024 * 1024,
           py::arg("locked") = false, py::arg("autotune") = true,
           py::arg("autotune_file") = "", py::arg("precision") = "int16",
           py::arg("adaptive_seqlen") = false)
W
Wilber 已提交
526
      .def("enable_npu", &AnalysisConfig::EnableNpu, py::arg("device_id") = 0)
F
flame 已提交
527 528
      .def("disable_gpu", &AnalysisConfig::DisableGpu)
      .def("use_gpu", &AnalysisConfig::use_gpu)
529
      .def("use_xpu", &AnalysisConfig::use_xpu)
W
Wilber 已提交
530
      .def("use_npu", &AnalysisConfig::use_npu)
F
flame 已提交
531
      .def("gpu_device_id", &AnalysisConfig::gpu_device_id)
532
      .def("xpu_device_id", &AnalysisConfig::xpu_device_id)
W
Wilber 已提交
533
      .def("npu_device_id", &AnalysisConfig::npu_device_id)
F
flame 已提交
534 535 536 537 538 539 540
      .def("memory_pool_init_size_mb",
           &AnalysisConfig::memory_pool_init_size_mb)
      .def("fraction_of_gpu_memory_for_pool",
           &AnalysisConfig::fraction_of_gpu_memory_for_pool)
      .def("switch_ir_optim", &AnalysisConfig::SwitchIrOptim,
           py::arg("x") = true)
      .def("ir_optim", &AnalysisConfig::ir_optim)
541
      .def("enable_memory_optim", &AnalysisConfig::EnableMemoryOptim)
542
      .def("enable_profile", &AnalysisConfig::EnableProfile)
543
      .def("disable_glog_info", &AnalysisConfig::DisableGlogInfo)
544
      .def("glog_info_disabled", &AnalysisConfig::glog_info_disabled)
545
      .def("set_optim_cache_dir", &AnalysisConfig::SetOptimCacheDir)
F
flame 已提交
546 547 548 549 550 551 552 553 554
      .def("switch_use_feed_fetch_ops", &AnalysisConfig::SwitchUseFeedFetchOps,
           py::arg("x") = true)
      .def("use_feed_fetch_ops_enabled",
           &AnalysisConfig::use_feed_fetch_ops_enabled)
      .def("switch_specify_input_names",
           &AnalysisConfig::SwitchSpecifyInputNames, py::arg("x") = true)
      .def("specify_input_name", &AnalysisConfig::specify_input_name)
      .def("enable_tensorrt_engine", &AnalysisConfig::EnableTensorRtEngine,
           py::arg("workspace_size") = 1 << 20, py::arg("max_batch_size") = 1,
555
           py::arg("min_subgraph_size") = 3,
N
nhzlx 已提交
556
           py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32,
557 558 559
           py::arg("use_static") = false, py::arg("use_calib_mode") = true)
      .def("set_trt_dynamic_shape_info",
           &AnalysisConfig::SetTRTDynamicShapeInfo,
560 561 562 563 564
           py::arg("min_input_shape") =
               std::map<std::string, std::vector<int>>({}),
           py::arg("max_input_shape") =
               std::map<std::string, std::vector<int>>({}),
           py::arg("optim_input_shape") =
565 566
               std::map<std::string, std::vector<int>>({}),
           py::arg("disable_trt_plugin_fp16") = false)
567 568
      .def("enable_tensorrt_oss", &AnalysisConfig::EnableTensorRtOSS)
      .def("tensorrt_oss_enabled", &AnalysisConfig::tensorrt_oss_enabled)
569
      .def("exp_disable_tensorrt_ops", &AnalysisConfig::Exp_DisableTensorRtOPs)
570 571 572
      .def("enable_tensorrt_dla", &AnalysisConfig::EnableTensorRtDLA,
           py::arg("dla_core") = 0)
      .def("tensorrt_dla_enabled", &AnalysisConfig::tensorrt_dla_enabled)
F
flame 已提交
573
      .def("tensorrt_engine_enabled", &AnalysisConfig::tensorrt_engine_enabled)
D
denglin-github 已提交
574 575
      .def("enable_dlnne", &AnalysisConfig::EnableDlnne,
           py::arg("min_subgraph_size") = 3)
576 577
      .def("enable_lite_engine", &AnalysisConfig::EnableLiteEngine,
           py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32,
W
Wilber 已提交
578
           py::arg("zero_copy") = false,
579 580 581
           py::arg("passes_filter") = std::vector<std::string>(),
           py::arg("ops_filter") = std::vector<std::string>())
      .def("lite_engine_enabled", &AnalysisConfig::lite_engine_enabled)
F
flame 已提交
582 583 584 585 586 587 588 589 590
      .def("switch_ir_debug", &AnalysisConfig::SwitchIrDebug,
           py::arg("x") = true)
      .def("enable_mkldnn", &AnalysisConfig::EnableMKLDNN)
      .def("mkldnn_enabled", &AnalysisConfig::mkldnn_enabled)
      .def("set_cpu_math_library_num_threads",
           &AnalysisConfig::SetCpuMathLibraryNumThreads)
      .def("cpu_math_library_num_threads",
           &AnalysisConfig::cpu_math_library_num_threads)
      .def("to_native_config", &AnalysisConfig::ToNativeConfig)
591
      .def("enable_quantizer", &AnalysisConfig::EnableMkldnnQuantizer)
592
      .def("enable_mkldnn_bfloat16", &AnalysisConfig::EnableMkldnnBfloat16)
593 594 595
#ifdef PADDLE_WITH_MKLDNN
      .def("quantizer_config", &AnalysisConfig::mkldnn_quantizer_config,
           py::return_value_policy::reference)
596 597
      .def("set_mkldnn_cache_capacity", &AnalysisConfig::SetMkldnnCacheCapacity,
           py::arg("capacity") = 0)
598
      .def("set_bfloat16_op", &AnalysisConfig::SetBfloat16Op)
599
#endif
F
flame 已提交
600 601 602
      .def("set_mkldnn_op", &AnalysisConfig::SetMKLDNNOp)
      .def("set_model_buffer", &AnalysisConfig::SetModelBuffer)
      .def("model_from_memory", &AnalysisConfig::model_from_memory)
603 604 605 606
      .def("delete_pass",
           [](AnalysisConfig &self, const std::string &pass) {
             self.pass_builder()->DeletePass(pass);
           })
W
Wilber 已提交
607 608 609 610
      .def("pass_builder",
           [](AnalysisConfig &self) {
             return dynamic_cast<PaddlePassBuilder *>(self.pass_builder());
           },
F
flame 已提交
611 612 613
           py::return_value_policy::reference);
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
#ifdef PADDLE_WITH_MKLDNN
void BindMkldnnQuantizerConfig(py::module *m) {
  py::class_<MkldnnQuantizerConfig> quantizer_config(*m,
                                                     "MkldnnQuantizerConfig");
  quantizer_config.def(py::init<const MkldnnQuantizerConfig &>())
      .def(py::init<>())
      .def("set_quant_data",
           [](MkldnnQuantizerConfig &self,
              const std::vector<PaddleTensor> &data) {
             auto warmup_data =
                 std::make_shared<std::vector<PaddleTensor>>(data);
             self.SetWarmupData(warmup_data);
             return;
           })
      .def("set_quant_batch_size", &MkldnnQuantizerConfig::SetWarmupBatchSize)
      .def(
          "set_enabled_op_types",
          (void (MkldnnQuantizerConfig::*)(std::unordered_set<std::string> &)) &
              MkldnnQuantizerConfig::SetEnabledOpTypes);
}
#endif

F
flame 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648
void BindAnalysisPredictor(py::module *m) {
  py::class_<AnalysisPredictor, PaddlePredictor>(*m, "AnalysisPredictor")
      .def(py::init<const AnalysisConfig &>())
      .def("init", &AnalysisPredictor::Init)
      .def(
          "run",
          [](AnalysisPredictor &self, const std::vector<PaddleTensor> &inputs) {
            std::vector<PaddleTensor> outputs;
            self.Run(inputs, &outputs);
            return outputs;
          })
      .def("get_input_tensor", &AnalysisPredictor::GetInputTensor)
      .def("get_output_tensor", &AnalysisPredictor::GetOutputTensor)
649 650 651
      .def("get_input_names", &AnalysisPredictor::GetInputNames)
      .def("get_output_names", &AnalysisPredictor::GetOutputNames)
      .def("get_input_tensor_shape", &AnalysisPredictor::GetInputTensorShape)
F
flame 已提交
652
      .def("zero_copy_run", &AnalysisPredictor::ZeroCopyRun)
653 654
      .def("clear_intermediate_tensor",
           &AnalysisPredictor::ClearIntermediateTensor)
655
      .def("try_shrink_memory", &AnalysisPredictor::TryShrinkMemory)
656 657 658 659 660 661 662
      .def("create_feed_fetch_var", &AnalysisPredictor::CreateFeedFetchVar)
      .def("prepare_feed_fetch", &AnalysisPredictor::PrepareFeedFetch)
      .def("prepare_argument", &AnalysisPredictor::PrepareArgument)
      .def("optimize_inference_program",
           &AnalysisPredictor::OptimizeInferenceProgram)
      .def("analysis_argument", &AnalysisPredictor::analysis_argument,
           py::return_value_policy::reference)
F
flame 已提交
663 664
      .def("clone", &AnalysisPredictor::Clone)
      .def("scope", &AnalysisPredictor::scope,
665
           py::return_value_policy::reference)
666 667 668 669
      .def("program", &AnalysisPredictor::program,
           py::return_value_policy::reference)
      .def("get_serialized_program", &AnalysisPredictor::GetSerializedProgram)
      .def("mkldnn_quantize", &AnalysisPredictor::MkldnnQuantize)
670 671
      .def("SaveOptimModel", &AnalysisPredictor::SaveOptimModel,
           py::arg("dir"));
F
flame 已提交
672
}
673

W
Wilber 已提交
674 675 676 677 678 679 680 681 682
void BindPaddleInferPredictor(py::module *m) {
  py::class_<paddle_infer::Predictor>(*m, "PaddleInferPredictor")
      .def(py::init<const paddle_infer::Config &>())
      .def("get_input_names", &paddle_infer::Predictor::GetInputNames)
      .def("get_output_names", &paddle_infer::Predictor::GetOutputNames)
      .def("get_input_handle", &paddle_infer::Predictor::GetInputHandle)
      .def("get_output_handle", &paddle_infer::Predictor::GetOutputHandle)
      .def("run", &paddle_infer::Predictor::Run)
      .def("clone", &paddle_infer::Predictor::Clone)
683
      .def("try_shrink_memory", &paddle_infer::Predictor::TryShrinkMemory)
W
Wilber 已提交
684 685 686 687
      .def("clear_intermediate_tensor",
           &paddle_infer::Predictor::ClearIntermediateTensor);
}

688 689 690 691 692 693
void BindZeroCopyTensor(py::module *m) {
  py::class_<ZeroCopyTensor>(*m, "ZeroCopyTensor")
      .def("reshape", &ZeroCopyTensor::Reshape)
      .def("copy_from_cpu", &ZeroCopyTensorCreate<int32_t>)
      .def("copy_from_cpu", &ZeroCopyTensorCreate<int64_t>)
      .def("copy_from_cpu", &ZeroCopyTensorCreate<float>)
694
      .def("copy_from_cpu", &ZeroCopyTensorCreate<paddle_infer::float16>)
695 696 697 698 699 700 701
      .def("copy_to_cpu", &ZeroCopyTensorToNumpy)
      .def("shape", &ZeroCopyTensor::shape)
      .def("set_lod", &ZeroCopyTensor::SetLoD)
      .def("lod", &ZeroCopyTensor::lod)
      .def("type", &ZeroCopyTensor::type);
}

W
Wilber 已提交
702 703 704 705 706 707
void BindPaddleInferTensor(py::module *m) {
  py::class_<paddle_infer::Tensor>(*m, "PaddleInferTensor")
      .def("reshape", &paddle_infer::Tensor::Reshape)
      .def("copy_from_cpu", &PaddleInferTensorCreate<int32_t>)
      .def("copy_from_cpu", &PaddleInferTensorCreate<int64_t>)
      .def("copy_from_cpu", &PaddleInferTensorCreate<float>)
708
      .def("copy_from_cpu", &PaddleInferTensorCreate<paddle_infer::float16>)
W
Wilber 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722
      .def("copy_to_cpu", &PaddleInferTensorToNumpy)
      .def("shape", &paddle_infer::Tensor::shape)
      .def("set_lod", &paddle_infer::Tensor::SetLoD)
      .def("lod", &paddle_infer::Tensor::lod)
      .def("type", &paddle_infer::Tensor::type);
}

void BindPredictorPool(py::module *m) {
  py::class_<paddle_infer::services::PredictorPool>(*m, "PredictorPool")
      .def(py::init<const paddle_infer::Config &, size_t>())
      .def("retrive", &paddle_infer::services::PredictorPool::Retrive,
           py::return_value_policy::reference);
}

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
void BindPaddlePassBuilder(py::module *m) {
  py::class_<PaddlePassBuilder>(*m, "PaddlePassBuilder")
      .def(py::init<const std::vector<std::string> &>())
      .def("set_passes",
           [](PaddlePassBuilder &self, const std::vector<std::string> &passes) {
             self.ClearPasses();
             for (auto pass : passes) {
               self.AppendPass(std::move(pass));
             }
           })
      .def("append_pass", &PaddlePassBuilder::AppendPass)
      .def("insert_pass", &PaddlePassBuilder::InsertPass)
      .def("delete_pass",
           [](PaddlePassBuilder &self, const std::string &pass_type) {
             self.DeletePass(pass_type);
           })
      .def("append_analysis_pass", &PaddlePassBuilder::AppendAnalysisPass)
      .def("turn_on_debug", &PaddlePassBuilder::TurnOnDebug)
      .def("debug_string", &PaddlePassBuilder::DebugString)
      .def("all_passes", &PaddlePassBuilder::AllPasses,
           py::return_value_policy::reference)
      .def("analysis_passes", &PaddlePassBuilder::AnalysisPasses);

  py::class_<PassStrategy, PaddlePassBuilder>(*m, "PassStrategy")
      .def(py::init<const std::vector<std::string> &>())
      .def("enable_cudnn", &PassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &PassStrategy::EnableMKLDNN)
      .def("enable_mkldnn_quantizer", &PassStrategy::EnableMkldnnQuantizer)
751
      .def("enable_mkldnn_bfloat16", &PassStrategy::EnableMkldnnBfloat16)
752 753 754 755 756 757 758
      .def("use_gpu", &PassStrategy::use_gpu);

  py::class_<CpuPassStrategy, PassStrategy>(*m, "CpuPassStrategy")
      .def(py::init<>())
      .def(py::init<const CpuPassStrategy &>())
      .def("enable_cudnn", &CpuPassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &CpuPassStrategy::EnableMKLDNN)
759 760
      .def("enable_mkldnn_quantizer", &CpuPassStrategy::EnableMkldnnQuantizer)
      .def("enable_mkldnn_bfloat16", &CpuPassStrategy::EnableMkldnnBfloat16);
761 762 763 764 765 766

  py::class_<GpuPassStrategy, PassStrategy>(*m, "GpuPassStrategy")
      .def(py::init<>())
      .def(py::init<const GpuPassStrategy &>())
      .def("enable_cudnn", &GpuPassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &GpuPassStrategy::EnableMKLDNN)
767 768
      .def("enable_mkldnn_quantizer", &GpuPassStrategy::EnableMkldnnQuantizer)
      .def("enable_mkldnn_bfloat16", &GpuPassStrategy::EnableMkldnnBfloat16);
769
}
770
}  // namespace
F
flame 已提交
771 772
}  // namespace pybind
}  // namespace paddle