sparse_weight_embedding_kernel.cc 3.9 KB
Newer Older
P
phlrain 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/embedding_kernel.h"
#include "paddle/phi/kernels/funcs/embedding_util.h"

#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"

namespace phi {

template <typename T, typename Context>
P
phlrain 已提交
27 28 29 30 31 32
struct LookupTableV2CPUSparseFunctor {
  LookupTableV2CPUSparseFunctor(const Context& dev_ctx,
                                const DenseTensor& input,
                                const SelectedRows& weight,
                                int64_t padding_idx,
                                DenseTensor* out)
P
phlrain 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
      : dev_ctx_(dev_ctx),
        input_(input),
        weight_(weight),
        out_(out),
        padding_idx_(padding_idx) {}

  template <typename IdT>
  void apply() {
    auto ids = CopyIdsToVector<IdT, int64_t>(input_);
    auto ids_numel = static_cast<int64_t>(ids.size());

    const auto& table_t = weight_;
    auto output_t = out_;
    int64_t row_width = table_t.value().dims()[1];
    const auto* table = table_t.value().template data<T>();
    auto* output = output_t->template mutable_data<T>(dev_ctx_.GetPlace());
    auto input_data_type =
        paddle::framework::TransToProtoVarType(table_t.value().dtype());

    for (int64_t i = 0; i < ids_numel; ++i) {
      if (padding_idx_ != kNoPadding && ids[i] == padding_idx_) {
        memset(output + i * row_width, 0, row_width * sizeof(T));
      } else {
        PADDLE_ENFORCE_GE(
            ids[i],
            0,
            phi::errors::InvalidArgument(
                "Variable value (input) of OP(fluid.layers.embedding) "
                "expected >= 0. But received %ld",
                ids[i]));
        auto id_index = table_t.Index(ids[i]);
        PADDLE_ENFORCE_GE(
            id_index,
            0,
            phi::errors::InvalidArgument(
                "the input key should be exists. But received %d.", id_index));

        if (input_data_type == paddle::framework::proto::VarType::BF16) {
          memcpy(output + i * row_width,
                 table + id_index * row_width,
                 row_width * sizeof(T));
        } else {
          auto blas = phi::funcs::GetBlas<phi::CPUContext, T>(dev_ctx_);
          blas.VCOPY(
              row_width, table + id_index * row_width, output + i * row_width);
        }
      }
    }
  }

 private:
  const Context& dev_ctx_;
  const DenseTensor& input_;
  const SelectedRows& weight_;
  DenseTensor* out_;
  int64_t padding_idx_;
};

template <typename T, typename Context>
void SparseWeightEmbeddingKernel(const Context& ctx,
                                 const DenseTensor& input,
                                 const SelectedRows& weight,
                                 int64_t padding_idx,
                                 DenseTensor* out) {
P
phlrain 已提交
97
  LookupTableV2CPUSparseFunctor<T, Context> functor(
P
phlrain 已提交
98 99 100 101 102 103 104
      ctx, input, weight, padding_idx, out);
  paddle::framework::VisitIntDataType(
      paddle::framework::TransToProtoVarType(input.dtype()), functor);
}

}  // namespace phi

P
phlrain 已提交
105
PD_REGISTER_KERNEL(sparse_weight_embedding,
P
phlrain 已提交
106 107 108 109 110 111
                   CPU,
                   ALL_LAYOUT,
                   phi::SparseWeightEmbeddingKernel,
                   float,
                   double,
                   phi::dtype::bfloat16) {}