test_gru_op.py 6.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
guosheng 已提交
15 16 17
import unittest
import numpy as np
import math
M
minqiyang 已提交
18
import functools
19 20
from op_test import OpTest
from test_lstm_op import identity, sigmoid, tanh, relu
G
guosheng 已提交
21 22 23


class TestGRUOp(OpTest):
24 25
    lod = [[2, 4, 3]]
    batch_size = sum(lod[0])
G
guosheng 已提交
26 27 28 29 30 31 32 33 34 35 36
    frame_size = 5
    activate = {
        'identity': identity,
        'sigmoid': sigmoid,
        'tanh': tanh,
        'relu': relu
    }

    @staticmethod
    def seq_to_batch(lod, is_reverse):
        idx_in_seq_list = []
37 38 39 40
        seq_lens = lod[0]
        seq_starts = [0]
        for i in range(len(seq_lens)):
            seq_starts.append(seq_starts[-1] + seq_lens[i])
G
guosheng 已提交
41
        sorted_seqs = sorted(
M
minqiyang 已提交
42
            list(range(len(seq_lens))), key=functools.cmp_to_key(lambda x, y: seq_lens[y] - seq_lens[x]))
G
guosheng 已提交
43 44 45 46 47 48 49 50 51 52 53
        num_batch = seq_lens[sorted_seqs[0]]
        for batch_idx in range(num_batch):
            idx_in_seq = []
            for i in range(len(seq_lens)):
                if seq_lens[sorted_seqs[i]] <= batch_idx:
                    break
                idx = (seq_starts[sorted_seqs[i] + 1] - 1 - batch_idx
                       ) if is_reverse else (
                           seq_starts[sorted_seqs[i]] + batch_idx)
                idx_in_seq.append(idx)
            idx_in_seq_list.append(idx_in_seq)
G
guosheng 已提交
54
        return idx_in_seq_list, sorted_seqs
G
guosheng 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

    def gru_step(self, x, h_p, w, b):
        batch_size = x.shape[0]
        frame_size = w.shape[0]
        g = x + np.tile(b, (batch_size, 1))
        w_u_r = w.flatten()[:frame_size * frame_size * 2].reshape(
            (frame_size, frame_size * 2))
        u_r = self.activate[self.attrs['gate_activation']](np.dot(
            h_p, w_u_r) + g[:, :frame_size * 2])
        u = u_r[:, :frame_size]
        r = u_r[:, frame_size:frame_size * 2]
        r_h_p = r * h_p
        w_c = w.flatten()[frame_size * frame_size * 2:].reshape(
            (frame_size, frame_size))
        c = self.activate[self.attrs['activation']](np.dot(r_h_p, w_c) +
                                                    g[:, frame_size * 2:])
        g = np.hstack((u_r, c))
        h = u * c + (1 - u) * h_p
        return g, r_h_p, h

    def gru(self):
        input, lod = self.inputs['Input']
        w = self.inputs['Weight']
78
        b = self.inputs['Bias'] if 'Bias' in self.inputs else np.zeros(
G
guosheng 已提交
79 80 81 82 83 84
            (1, self.frame_size * 3))
        batch_gate = self.outputs['BatchGate']
        batch_reset_hidden_prev = self.outputs['BatchResetHiddenPrev']
        batch_hidden = self.outputs['BatchHidden']
        hidden = self.outputs['Hidden']
        idx_in_seq_list = self.idx_in_seq_list
85 86 87
        h_p = self.inputs['H0'][
            self.sorted_seqs] if 'H0' in self.inputs else np.zeros(
                (len(idx_in_seq_list[0]), self.frame_size))
G
guosheng 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        num_batch = len(idx_in_seq_list)
        end_idx = 0
        for batch_idx in range(num_batch):
            x = input[idx_in_seq_list[batch_idx]]
            g, r_h_p, h = self.gru_step(x, h_p, w, b)
            if batch_idx < (num_batch - 1):
                h_p = h[:len(idx_in_seq_list[batch_idx + 1])]
            start_idx = end_idx
            end_idx = start_idx + len(idx_in_seq_list[batch_idx])
            batch_gate[start_idx:end_idx] = g
            batch_reset_hidden_prev[start_idx:end_idx] = r_h_p
            batch_hidden[start_idx:end_idx] = h
            hidden[idx_in_seq_list[batch_idx]] = h
        return batch_gate, batch_reset_hidden_prev, hidden

    def set_data(self):
G
guosheng 已提交
104 105 106
        lod = self.lod
        self.idx_in_seq_list, self.sorted_seqs = self.seq_to_batch(
            lod, self.is_reverse)
G
guosheng 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        batch_size = self.batch_size
        frame_size = self.frame_size
        input = np.random.rand(batch_size, frame_size * 3).astype('float64')
        h0 = np.random.rand(len(self.idx_in_seq_list[0]),
                            frame_size).astype('float64')
        weight = np.random.rand(frame_size, frame_size * 3).astype('float64')
        bias = np.random.rand(1, frame_size * 3).astype('float64')

        self.inputs = {
            'Input': (input, lod),
            'H0': h0,
            'Weight': weight,
            'Bias': bias
        }

        self.outputs = {
            'BatchGate': np.zeros(
                (batch_size, frame_size * 3), dtype='float64'),
            'BatchResetHiddenPrev': np.zeros(
                (batch_size, frame_size), dtype='float64'),
            'BatchHidden': np.zeros(
                (batch_size, frame_size), dtype='float64'),
            'Hidden': np.zeros(
                (batch_size, frame_size), dtype='float64')
        }

    def set_confs(self):
        self.is_reverse = False
        self.attrs = {
            'activation': 'tanh',
            'gate_activation': 'sigmoid',
            'is_reverse': self.is_reverse
        }

    def setUp(self):
        self.op_type = "gru"
        self.set_confs()
        self.set_data()
        self.gru()

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['Input', 'H0', 'Weight', 'Bias'], ['Hidden'])


class TestGRUOpNoInitial(TestGRUOp):
    def set_data(self):
        super(TestGRUOpNoInitial, self).set_data()
        self.inputs.pop('H0')

    def test_check_grad(self):
        self.check_grad(['Input', 'Weight', 'Bias'], ['Hidden'])


class TestGRUOpReverse(TestGRUOp):
    def set_confs(self):
        self.is_reverse = True
        self.attrs = {
G
guosheng 已提交
167
            'activation': 'tanh',
G
guosheng 已提交
168
            'gate_activation': 'sigmoid',
G
guosheng 已提交
169 170 171 172 173 174
            'is_reverse': self.is_reverse
        }


if __name__ == "__main__":
    unittest.main()