selected_rows_functor.cc 33.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/selected_rows_functor.h"
H
hong 已提交
16
#include "paddle/fluid/framework/mixed_vector.h"
17
#include "paddle/fluid/platform/device/device_wrapper.h"
18

L
lidanqing 已提交
19 20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/operators/mkldnn/axpy_handler.h"
#endif

23 24 25 26
namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
27 28
struct SelectedRowsAdd<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
29 30
                  const phi::SelectedRows& input1,
                  const phi::SelectedRows& input2, phi::SelectedRows* output) {
31
    auto in1_height = input1.height();
32 33 34 35 36 37
    PADDLE_ENFORCE_EQ(
        in1_height, input2.height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height  = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2.height()));
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    output->set_height(in1_height);

    auto& in1_rows = input1.rows();
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
55 56 57 58 59 60 61 62 63 64 65 66
    PADDLE_ENFORCE_EQ(
        in1_row_numel, in2_value.numel() / in2_rows.size(),
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, in2_value.numel() / in2_rows.size()));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, out_value->numel() / out_rows.size(),
        platform::errors::InvalidArgument(
            "The input and oupput width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, out_value->numel() / out_rows.size()));
67 68

    auto in1_place = input1.place();
69 70 71
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
72
    auto in2_place = input2.place();
73 74 75
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
76
    auto out_place = context.GetPlace();
77 78 79
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(out_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
80 81 82

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();
83
    memory::Copy(out_place, out_data, in1_place, in1_data,
84 85 86
                 in1_value.numel() * sizeof(T));

    auto* in2_data = in2_value.data<T>();
87
    memory::Copy(out_place, out_data + in1_value.numel(), in2_place, in2_data,
88 89 90 91
                 in2_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
92 93
template struct SelectedRowsAdd<platform::CPUDeviceContext, float>;
template struct SelectedRowsAdd<platform::CPUDeviceContext, double>;
94 95

template <typename T>
Q
QI JUN 已提交
96 97
struct SelectedRowsAddTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
98
                  const phi::SelectedRows& input1,
99 100 101 102
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
103 104 105 106 107 108 109 110 111 112 113 114
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
    PADDLE_ENFORCE_EQ(
        in1_height, out_dims[0],
        platform::errors::InvalidArgument(
            "The input and output height must be equal."
            "But recieved input height = [%d], output height = [%d]",
            in1_height, out_dims[0]));
115 116 117 118 119

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
120 121 122 123 124 125 126 127 128 129 130 131
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2.numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2.numel() / in1_height));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, output->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The input and output width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, output->numel() / in1_height));
132

133
    phi::funcs::SetConstant<platform::CPUDeviceContext, T> functor;
134 135 136 137 138 139 140 141 142 143 144 145 146 147
    functor(context, output, 0.0);

    auto* in1_data = in1_value.data<T>();
    auto* out_data = output->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        out_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
148
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
149 150 151
  }
};

Q
QI JUN 已提交
152 153
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, double>;
Q
QI JUN 已提交
154 155

template <typename T>
Q
QI JUN 已提交
156 157
struct SelectedRowsAddTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
158 159
                  const phi::SelectedRows& input1, const int64_t input2_offset,
                  phi::SelectedRows* input2) {
Q
QI JUN 已提交
160
    auto in1_height = input1.height();
161 162 163 164 165 166
    PADDLE_ENFORCE_EQ(
        in1_height, input2->height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2->height()));
Q
QI JUN 已提交
167 168 169 170 171 172 173 174

    auto& in1_rows = input1.rows();
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
175 176
    paddle::framework::MixVector<int64_t> mixv_in2_rows(&in2_rows);
    mixv_in2_rows.Extend(in1_rows.begin(), in1_rows.end());
Q
QI JUN 已提交
177 178

    auto in1_place = input1.place();
179 180 181
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
182
    auto in2_place = input2->place();
183 184 185
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
186 187 188

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
189
    memory::Copy(in2_place, in2_data + input2_offset, in1_place, in1_data,
Q
QI JUN 已提交
190 191 192 193
                 in1_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
194 195 196 197
template struct SelectedRowsAddTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int64_t>;
Q
QI JUN 已提交
198

M
minqiyang 已提交
199 200 201
template <typename T>
struct SelectedRowsSumTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
202
                  const std::vector<phi::SelectedRows*>& input1,
M
minqiyang 已提交
203
                  const std::vector<int64_t>& input2_offsets,
204
                  phi::SelectedRows* input2) {
M
minqiyang 已提交
205 206 207 208 209 210
    // Ensure all selected rows have the same height
    size_t size = 0u;
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      auto& in_rows = (*iter)->rows();
      size += in_rows.end() - in_rows.begin();
      auto in1_height = (*iter)->height();
211 212 213 214 215 216
      PADDLE_ENFORCE_EQ(in1_height, input2->height(),
                        platform::errors::InvalidArgument(
                            "The two inputs height must be equal."
                            "But recieved first input height = [%d], second "
                            "input height = [%d]",
                            in1_height, input2->height()));
M
minqiyang 已提交
217 218 219 220 221 222 223 224 225 226 227 228
    }
    // concat rows
    std::vector<int64_t> in2_rows;
    in2_rows.reserve(in2_rows.size() + size);
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      const framework::Vector<int64_t>& in_rows = (*iter)->rows();
      in2_rows.insert(in2_rows.end(), in_rows.begin(), in_rows.end());
    }
    input2->set_rows(in2_rows);

    auto* in2_value = input2->mutable_value();
    auto* in2_data = in2_value->data<T>();
229
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
M
minqiyang 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242
    size_t offset = 0u;
    for (size_t i = 0u; i != input1.size(); ++i) {
      auto& in_value = input1[i]->value();
      const auto* in_data = in_value.data<T>();
      offset += input2_offsets[i];
      blas.VCOPY(in_value.numel(), in_data, in2_data + offset);
    }
  }
};

template struct SelectedRowsSumTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsSumTo<platform::CPUDeviceContext, double>;

Q
QI JUN 已提交
243
template <typename T>
Q
QI JUN 已提交
244 245
struct SelectedRowsAddToTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
246
                  const phi::SelectedRows& input1, framework::Tensor* input2) {
Q
Qiao Longfei 已提交
247
    if (UNLIKELY(input1.rows().size() == 0)) {
248 249 250
      LOG(WARNING) << "input selected rows is empty!";
      return;
    }
Q
QI JUN 已提交
251 252
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
253 254 255 256 257 258
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
Q
QI JUN 已提交
259 260 261 262 263

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
264 265 266 267 268 269
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
Q
QI JUN 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

Q
QI JUN 已提交
283 284 285 286
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int64_t>;
287 288
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext,
                                        platform::bfloat16>;
289

T
typhoonzero 已提交
290 291 292 293 294 295 296 297
// This is a separated namespace for manipulate SelectedRows typed
// data. Like merge duplicated rows, adding two SelectedRows etc.
//
// Another group of functors is called "scatter updates", which means
// use SelectedRows to update a dense tensor with different Ops, like
// add or mul.
namespace scatter {

298
template <typename T, typename DeviceContext>
299
typename std::enable_if<!std::is_integral<T>::value>::type elementwise_add_to(
300 301
    phi::funcs::BlasT<DeviceContext, T>* blas, size_t data_len, const T* in,
    T* out) {
302
  blas->AXPY(data_len, T(1.f), in, out);
Q
Qiao Longfei 已提交
303 304
}

305
template <typename T, typename DeviceContext>
306
typename std::enable_if<std::is_integral<T>::value>::type elementwise_add_to(
307 308
    phi::funcs::BlasT<DeviceContext, T>* blas, size_t data_len, const T* in,
    T* out) {
T
Tao Luo 已提交
309
  for (size_t i = 0; i < data_len; i++) {
Q
Qiao Longfei 已提交
310 311
    out[i] += in[i];
  }
T
typhoonzero 已提交
312 313
}

314
template <typename T, typename DeviceContext>
315
typename std::enable_if<std::is_same<T, platform::bfloat16>::value>::type
316
add_sparse_inputs(const std::vector<const phi::SelectedRows*>& inputs,
317
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
318 319
                  int64_t input_width, const DeviceContext& context,
                  T* out_data) {
320
#ifndef PADDLE_WITH_MKLDNN
321
  auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
#endif
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

#ifdef PADDLE_WITH_MKLDNN
    OneDNNAXPYHandler<T> axpy_handler(input_width, T(1.f));
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
      axpy_handler(&input_data[i * input_width],
                   &out_data[out_i * input_width]);
    }
#else
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
340 341 342
      elementwise_add_to<T, DeviceContext>(
          &blas, static_cast<size_t>(input_width), &input_data[i * input_width],
          &out_data[out_i * input_width]);
343 344 345 346 347
    }
#endif
  }
}

348
template <typename T, typename DeviceContext>
349
typename std::enable_if<!std::is_same<T, platform::bfloat16>::value>::type
350
add_sparse_inputs(const std::vector<const phi::SelectedRows*>& inputs,
351
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
352 353
                  int64_t input_width, const DeviceContext& context,
                  T* out_data) {
354
  VLOG(4) << "[CPU] add_sparse_inputs <" << typeid(T).name();
355
  auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
356 357 358 359 360 361 362 363 364
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
365 366 367
      elementwise_add_to<T, DeviceContext>(
          &blas, static_cast<size_t>(input_width), &input_data[i * input_width],
          &out_data[out_i * input_width]);
368 369 370 371
    }
  }
}

372 373 374
template <typename DeviceContext, typename T>
struct MergeAddImpl {
  phi::SelectedRows operator()(const DeviceContext& context,
375 376 377
                               const phi::SelectedRows& input,
                               const bool sorted_result = false) {
    phi::SelectedRows out;
378
    (*this)(context, input, &out, sorted_result);
S
sneaxiy 已提交
379 380 381
    return out;
  }

382 383
  void operator()(const DeviceContext& context, const phi::SelectedRows& input,
                  phi::SelectedRows* output, const bool sorted_result = false) {
384
    std::vector<const phi::SelectedRows*> inputs;
385
    inputs.push_back(&input);
386
    (*this)(context, inputs, output, sorted_result);
387
  }
T
typhoonzero 已提交
388

389
  void operator()(const DeviceContext& context,
390 391
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result = false) {
Q
Qiao Longfei 已提交
392
    if (inputs.size() == 0) {
M
minqiyang 已提交
393
      VLOG(3) << "no input! return";
Q
Qiao Longfei 已提交
394 395
      return;
    }
396
    const phi::SelectedRows* has_value_input = nullptr;
Q
Qiao Longfei 已提交
397
    for (auto* in : inputs) {
Q
Qiao Longfei 已提交
398
      if (in->rows().size() > 0) {
Q
Qiao Longfei 已提交
399 400 401 402 403
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
M
minqiyang 已提交
404
      VLOG(3) << "no input has value! just return" << std::endl;
Q
Qiao Longfei 已提交
405 406 407 408
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
409
    phi::SelectedRows& out = *output;
410
    std::set<int64_t> merged_row_set;
411
    size_t row_num = 0;
412
    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
413
      if (input->rows().size() == 0) {
Q
Qiao Longfei 已提交
414 415
        continue;
      }
416
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
417 418 419
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
420
      PADDLE_ENFORCE_EQ(input_height, input->height(),
421 422
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
423
      row_num += input->rows().size();
424 425
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
426

427
    out.set_height(input_height);
T
wip  
typhoonzero 已提交
428
    out.mutable_value()->mutable_data<T>(
429
        phi::make_ddim(
430
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
T
typhoonzero 已提交
431
        context.GetPlace());
432
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
433

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    if (merged_row_set.size() == row_num && !sorted_result) {
      // no duplicated ids, just concat the result together
      std::vector<int64_t> merge_rows;
      merge_rows.reserve(row_num);
      // concat rows
      for (auto* in : inputs) {
        merge_rows.insert(merge_rows.end(), in->rows().begin(),
                          in->rows().end());
      }
      out.set_rows(merge_rows);
      auto in_place = inputs[0]->place();
      auto out_place = out.place();
      int64_t copied_numel = 0;
      for (auto* in : inputs) {
        auto* in_data = in->value().data<T>();
449
        auto in_numel = in->rows().size() * input_width;
450
        memory::Copy(out_place, out_data + copied_numel, in_place, in_data,
451 452 453 454 455 456
                     in_numel * sizeof(T));
        copied_numel += in_numel;
      }
    } else {
      std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                      merged_row_set.end());
T
typhoonzero 已提交
457

458 459 460
      if (sorted_result) {
        std::sort(merge_rows.begin(), merge_rows.end());
      }
T
typhoonzero 已提交
461

462 463
      out.set_rows(merge_rows);

464
      phi::funcs::SetConstant<DeviceContext, T> constant_functor;
465
      constant_functor(context, out.mutable_value(), static_cast<T>(0.f));
466 467 468 469

      std::unordered_map<int64_t, size_t> rows_to_id;
      for (size_t i = 0; i < merge_rows.size(); ++i) {
        rows_to_id[merge_rows[i]] = i;
Q
Qiao Longfei 已提交
470
      }
471

472 473
      add_sparse_inputs<T, DeviceContext>(inputs, rows_to_id, input_width,
                                          context, out_data);
T
typhoonzero 已提交
474
    }
T
wip  
typhoonzero 已提交
475 476 477
  }
};

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
template <typename T>
struct MergeAdd<platform::CPUDeviceContext, T> {
  // unary functor, merge by adding duplicated rows in
  // the input SelectedRows object.
  phi::SelectedRows operator()(const platform::CPUDeviceContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result) {
    return MergeAddImpl<platform::CPUDeviceContext, T>()(context, input,
                                                         sorted_result);
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const phi::SelectedRows& input, phi::SelectedRows* output,
                  const bool sorted_result) {
    MergeAddImpl<platform::CPUDeviceContext, T>()(context, input, output,
                                                  sorted_result);
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result) {
    MergeAddImpl<platform::CPUDeviceContext, T>()(context, inputs, output,
                                                  sorted_result);
  }
};

template <typename T>
struct MergeAdd<phi::CPUContext, T> {
  // unary functor, merge by adding duplicated rows in
  // the input SelectedRows object.
  phi::SelectedRows operator()(const phi::CPUContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result) {
    return MergeAddImpl<phi::CPUContext, T>()(context, input, sorted_result);
  }

  void operator()(const phi::CPUContext& context,
                  const phi::SelectedRows& input, phi::SelectedRows* output,
                  const bool sorted_result) {
    MergeAddImpl<phi::CPUContext, T>()(context, input, output, sorted_result);
  }

  void operator()(const phi::CPUContext& context,
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result) {
    MergeAddImpl<phi::CPUContext, T>()(context, inputs, output, sorted_result);
  }
};

#define TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(dtype)               \
  template struct MergeAddImpl<platform::CPUDeviceContext, dtype>; \
  template struct MergeAddImpl<phi::CPUContext, dtype>;            \
  template struct MergeAdd<platform::CPUDeviceContext, dtype>;     \
  template struct MergeAdd<phi::CPUContext, dtype>;

TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(float)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(double)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(int)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(int64_t)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(platform::bfloat16)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(platform::complex<float>)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(platform::complex<double>)

541 542 543
#ifdef PADDLE_WITH_XPU
template <typename T>
struct MergeAdd<platform::XPUDeviceContext, T> {
544 545 546 547
  phi::SelectedRows operator()(const platform::XPUDeviceContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result = false) {
    phi::SelectedRows out;
548 549 550 551 552
    (*this)(context, input, &out, sorted_result);
    return out;
  }

  void operator()(const platform::XPUDeviceContext& context,
553
                  const phi::SelectedRows& input, phi::SelectedRows* output,
554 555 556 557 558 559
                  const bool sorted_result = false) {
    framework::Vector<int64_t> input_rows(input.rows());
    if (input_rows.size() == 0) {
      return;
    }

560
    phi::SelectedRows& out = *output;
561 562 563 564 565 566 567
    std::set<int64_t> row_set(input_rows.begin(), input_rows.end());
    std::vector<int64_t> merge_rows(row_set.begin(), row_set.end());
    auto input_width = input.value().dims()[1];

    out.set_rows(merge_rows);
    out.set_height(input.height());
    out.mutable_value()->mutable_data<T>(
568
        phi::make_ddim({static_cast<int64_t>(merge_rows.size()), input_width}),
569 570 571 572 573 574 575
        context.GetPlace());

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

576 577 578 579
    auto* y_data = out.mutable_value()->data<T>();
    auto* x_data = input.value().data<T>();
    int xm = input_rows.size();
    int ym = merge_rows.size();
580
    int n = input_width;
581 582 583 584 585 586 587 588 589 590 591 592

    xpu::ctx_guard RAII_GUARD(context.x_context());
    int64_t* x_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(xm);
    int64_t* y_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(ym);
    memory::Copy(context.GetPlace(), y_rows_data, platform::CPUPlace(),
                 merge_rows.data(), ym * sizeof(int64_t));
    memory::Copy(context.GetPlace(), x_rows_data, platform::CPUPlace(),
                 input_rows.data(), xm * sizeof(int64_t));
    int r =
        xpu::merge_dup_rows<T, int64_t>(context.x_context(), x_data, y_data,
                                        x_rows_data, y_rows_data, xm, n, ym);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "merge_dup_rows");
593 594 595
  }

  void operator()(const platform::XPUDeviceContext& context,
596 597
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result = false) {
598 599 600 601
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
602
    const phi::SelectedRows* has_value_input = nullptr;
603 604 605 606 607 608 609 610 611 612 613 614
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
615
    phi::SelectedRows& out = *output;
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
      PADDLE_ENFORCE_EQ(input_height, input->height(),
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());

    if (sorted_result) {
      std::sort(merge_rows.begin(), merge_rows.end());
    }

    out.set_rows(merge_rows);
    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
643
        phi::make_ddim(
644 645 646
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());

647
    float* y_data = reinterpret_cast<float*>(out.mutable_value()->data<T>());
648 649 650 651 652 653 654 655 656 657 658 659

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto& input_rows = input->rows();

660 661 662
      auto* x_data = input->value().data<T>();
      int xm = input_rows.size();
      int ym = merge_rows.size();
663
      int n = input_width;
664 665 666 667 668 669 670 671 672 673 674 675

      xpu::ctx_guard RAII_GUARD(context.x_context());
      int64_t* x_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(xm);
      int64_t* y_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(ym);
      memory::Copy(context.GetPlace(), y_rows_data, platform::CPUPlace(),
                   merge_rows.data(), ym * sizeof(int64_t));
      memory::Copy(context.GetPlace(), x_rows_data, platform::CPUPlace(),
                   input_rows.data(), xm * sizeof(int64_t));
      int r =
          xpu::merge_dup_rows<T, int64_t>(context.x_context(), x_data, y_data,
                                          x_rows_data, y_rows_data, xm, n, ym);
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "merge_dup_rows");
676 677 678 679 680
    }
  }
};

#endif
681 682
template <typename T>
struct MergeAverage<platform::CPUDeviceContext, T> {
683 684 685
  phi::SelectedRows operator()(const platform::CPUDeviceContext& context,
                               const phi::SelectedRows& input) {
    phi::SelectedRows out;
686 687 688 689 690
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
691 692
                  const phi::SelectedRows& input, phi::SelectedRows* output) {
    std::vector<const phi::SelectedRows*> inputs;
693 694 695 696 697
    inputs.push_back(&input);
    (*this)(context, inputs, output);
  }

  void operator()(const platform::CPUDeviceContext& context,
698 699
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output) {
700 701 702 703
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
704
    const phi::SelectedRows* has_value_input = nullptr;
705 706 707 708 709 710 711 712 713 714 715 716
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
717
    phi::SelectedRows& out = *output;
718 719 720 721 722 723 724
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
725 726 727
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
728
      PADDLE_ENFORCE_EQ(input_height, input->height(),
729 730
                        platform::errors::InvalidArgument(
                            "All input should have same height."));
731 732 733 734 735 736
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
737
        phi::make_ddim(
738 739 740 741 742 743 744 745 746 747
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());
    auto* out_data = out.mutable_value()->data<T>();

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());
    std::sort(merge_rows.begin(), merge_rows.end());

    out.set_rows(merge_rows);

748
    phi::funcs::SetConstant<platform::CPUDeviceContext, T> constant_functor;
749 750 751 752 753 754 755
    constant_functor(context, out.mutable_value(), 0.0);

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

756
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
757 758 759 760 761 762 763 764 765
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();

      for (size_t i = 0; i < input_rows.size(); i++) {
        size_t out_i = rows_to_id[input_rows[i]];
766 767 768
        elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                              &input_data[i * input_width],
                              &out_data[out_i * input_width]);
769 770 771 772 773 774 775 776 777 778 779 780
      }
    }
    size_t input_width_cast = static_cast<size_t>(input_width);
    T count = static_cast<T>(inputs.size());
    for (size_t i = 0; i < merge_rows.size(); i++) {
      for (size_t j = 0; j < input_width_cast; j++) {
        out_data[i * input_width + j] = out_data[i * input_width + j] / count;
      }
    }
  }
};

781 782 783 784
#ifdef PADDLE_WITH_XPU
template struct MergeAdd<platform::XPUDeviceContext, float>;
#endif

785 786 787 788 789
template struct MergeAverage<platform::CPUDeviceContext, int>;
template struct MergeAverage<platform::CPUDeviceContext, int64_t>;
template struct MergeAverage<platform::CPUDeviceContext, float>;
template struct MergeAverage<platform::CPUDeviceContext, double>;

T
wip  
typhoonzero 已提交
790 791
template <typename T>
struct UpdateToTensor<platform::CPUDeviceContext, T> {
T
typhoonzero 已提交
792
  void operator()(const platform::CPUDeviceContext& context,
793
                  const ScatterOps& op, const phi::SelectedRows& input1,
T
typhoonzero 已提交
794
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
795 796
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
797 798 799 800 801 802
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
T
wip  
typhoonzero 已提交
803 804 805 806 807

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
808 809 810 811 812 813
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
T
wip  
typhoonzero 已提交
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    // FIXME(typhoonzero): use macro fix the below messy code.
    switch (op) {
      case ScatterOps::ASSIGN:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::ADD:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUB:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] -=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUBBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] -
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
      case ScatterOps::MUL:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] *=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIV:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] /=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIVBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] /
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
    }
T
typhoonzero 已提交
858 859 860 861
  }
};

}  // namespace scatter
862 863 864
}  // namespace math
}  // namespace operators
}  // namespace paddle