executor.py 16.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
dzhwinter 已提交
15
import numpy as np
Y
Yang Yu 已提交
16
import contextlib
17
from framework import Program, default_main_program, Variable
18 19
from . import core

X
xuwei06 已提交
20
__all__ = [
21
    'Executor', 'global_scope', 'scope_guard', '_switch_scope', 'fetch_var'
X
xuwei06 已提交
22
]
Y
Yu Yang 已提交
23

Y
Yu Yang 已提交
24 25
g_scope = core.Scope()

Y
Yu Yang 已提交
26

Y
Yang Yu 已提交
27
def global_scope():
Y
yuyang18 已提交
28 29 30 31 32 33 34
    """
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

    Returns:
        Scope: The global/default scope instance.
    """
Y
Yang Yu 已提交
35 36 37
    return g_scope


38
def _switch_scope(scope):
Y
Yang Yu 已提交
39 40 41 42 43 44 45 46
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


@contextlib.contextmanager
def scope_guard(scope):
Y
yuyang18 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59
    """
    Change the global/default scope instance by Python `with` statement. All
    variable in runtime will assigned to the new scope.

    Examples:
        >>> import paddle.fluid as fluid
        >>> new_scope = fluid.Scope()
        >>> with fluid.scope_guard(new_scope):
        >>>     ...

    Args:
        scope: The new global/default scope.
    """
60
    ex = _switch_scope(scope)
Y
Yang Yu 已提交
61
    yield
62
    _switch_scope(ex)
Y
Yang Yu 已提交
63 64


D
dzhwinter 已提交
65
def as_numpy(tensor):
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
    Examples:
        >>> import paddle.fluid as fluid
        >>> outs = executor.run(...)
        >>> np_outs = map(lambda x: as_numpy(x), outs)
        >>>     ...

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
D
dzhwinter 已提交
81 82 83 84
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
85
    if len(lod) > 0:
D
dzhwinter 已提交
86
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
87 88 89 90
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
    return np.array(tensor)
D
dzhwinter 已提交
91 92


93 94 95 96 97 98 99 100 101 102 103 104
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
105 106
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
107 108 109
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
110
        A boolean value that indicates whether a block has feed operators
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
133

134 135 136 137 138 139 140 141 142
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
143 144 145
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
146

X
xuwei06 已提交
147 148 149
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


X
xuwei06 已提交
171 172
def fetch_var(name, scope=None, return_numpy=True):
    """
C
chengduoZH 已提交
173 174 175
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
176
    Args:
177 178 179 180
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
181 182 183 184
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
185 186 187 188 189 190 191 192
    Returns:
       LodTensor|numpy.ndarray
    """
    assert isinstance(name, str)
    if scope is None:
        scope = global_scope()
    assert isinstance(scope, core.Scope)

Y
Yibing Liu 已提交
193
    var = scope.find_var(name)
194 195 196 197
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
198 199 200 201 202 203
    tensor = var.get_tensor()
    if return_numpy:
        tensor = as_numpy(tensor)
    return tensor


204
def _get_program_cache_key(feed, fetch_list):
Q
qiaolongfei 已提交
205 206 207 208 209 210 211
    feed_var_names = feed.keys()

    def to_name_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
212 213
        elif isinstance(var, basestring):
            return str(var)
Q
qiaolongfei 已提交
214 215 216 217 218 219 220 221
        else:
            raise TypeError(str(var) + " should be Variable or str")

    fetch_var_names = map(to_name_str, fetch_list)

    return str(feed_var_names + fetch_var_names)


Y
Yu Yang 已提交
222
class Executor(object):
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    """
    An Executor in Python, only support the single-GPU running. For multi-cards, please refer to
    ParallelExecutor.
    Python executor takes a program, add feed operators and fetch operators to this program according
    to feed map and fetch_list. Feed map provides input data for the program. fetch_list provides
    the variables(or names) that user want to get after program run. Note: the executor will run all
    operators in the program but not only the operators dependent by the fetch_list.
    It store the global variables into the global scope, and create a local scope for the temporary 
    variables. The local scope contents will be discarded after every minibatch forward/backward finished. 
    But the global scope variables will be persistent through different runs.
    All of ops in program will be running in sequence.

    Args:
        place(core.CPUPlace|core.CUDAPlace(n)): indicate the executor run on which device

    Note: For debugging complicated network in parallel-GPUs, you can test it on the executor.
    They has the exactly same arguments, and expected the same results.
    """

D
dzhwinter 已提交
242 243 244 245 246
    def __init__(self, place):
        self.place = place
        p = core.Place()
        p.set_place(place)
        self.executor = core.Executor(p)
Q
qiaolongfei 已提交
247
        self.program_caches = dict()
D
dzhwinter 已提交
248

D
dzhwinter 已提交
249
    def as_lodtensor(self, data):
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> exe = fluid.executor(fluid.CPUPlace())
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: exe.as_lodtensor(x), data)
            >>>     ...

        Args:
            data(numpy.ndarray): a instance of array

        Returns:
            LoDTensor
        """
D
dzhwinter 已提交
267 268 269 270 271 272 273 274 275 276
        if isinstance(data, list):
            raise RuntimeError("Some of your feed data hold LoD information. \
                They can not be completely cast from a list of Python \
                ndarray to LoDTensor. Please convert data to LoDTensor \
                directly before feeding the data.\
                ")
        # single tensor case
        tensor = core.LoDTensor()
        tensor.set(data, self.place)
        return tensor
Y
Yu Yang 已提交
277

Q
Qiao Longfei 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                out = global_block.var(name)
                global_block.prepend_op(
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i})

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(var, str), (
                    "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
        for op in program.global_block().ops:
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
                if not isinstance(cur_feed, core.LoDTensor):
D
dzhwinter 已提交
336
                    cur_feed = self.as_lodtensor(cur_feed)
Q
Qiao Longfei 已提交
337 338 339 340 341 342 343 344 345 346 347 348
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
            for i in xrange(len(fetch_list))
        ]
        return outs

Y
Yu Yang 已提交
349
    def run(self,
Y
Yu Yang 已提交
350
            program=None,
351 352
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
353
            feed_var_name='feed',
Y
Yu Yang 已提交
354
            fetch_var_name='fetch',
D
dzhwinter 已提交
355
            scope=None,
356 357
            return_numpy=True,
            use_program_cache=False):
358 359
        """
        Run program by this Executor. Feed data by feed map, fetch result by fetch_list.
Q
qiaolongfei 已提交
360 361
        Python executor takes a program, add feed operators and fetch operators to this program according
        to feed map and fetch_list. Feed map provides input data for the program. fetch_list provides
362 363 364
        the variables(or names) that user want to get after program run.

        Note: the executor will run all
Q
qiaolongfei 已提交
365 366
        operators in the program but not only the operators dependent by the fetch_list

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
        Args:
            program(Program): the program that need to run, if not provied, then default_main_program will be used.
            feed(dict): feed variable map, e.g. {"image": ImageData, "label": LableData}
            fetch_list(list): a list of variable or variable names that user want to get, run will return them according to this list.
            feed_var_name(str): the name for the input variable of feed Operator.
            fetch_var_name(str): the name for the output variable of fetch Operator.
            scope(Scope): the scope used to run this program, you can switch it to different scope. default is global_scope
            return_numpy(bool): if convert the fetched tensor to numpy
            use_program_cache(bool): set use_program_cache to true if program not changed compare to the last step.

        Returns:

            list(numpy.array): fetch result according to fetch_list.


        Examples:

            >>> data = layers.data(name='X', shape=[1], dtype='float32')
            >>> hidden = layers.fc(input=data, size=10)
            >>> layers.assign(hidden, out)
            >>> loss = layers.mean(out)
            >>> adam = fluid.optimizer.Adam()
            >>> adam.minimize(loss)

            >>> cpu = core.CPUPlace()
            >>> exe = Executor(cpu)
            >>> exe.run(default_startup_program())

            >>> x = numpy.random.random(size=(10, 1)).astype('float32')
            >>> outs = exe.run(
            >>>     feed={'X': x},
            >>>     fetch_list=[loss.name])
399
        """
400 401
        if feed is None:
            feed = {}
Q
qiaolongfei 已提交
402
        if not isinstance(feed, dict):
D
dzhwinter 已提交
403 404 405
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
406 407
        if fetch_list is None:
            fetch_list = []
Y
Yu Yang 已提交
408
        if program is None:
Y
Yu Yang 已提交
409
            program = default_main_program()
Y
Yu Yang 已提交
410

Y
Yu Yang 已提交
411
        if not isinstance(program, Program):
D
dzhwinter 已提交
412 413 414
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
415

Y
Yu Yang 已提交
416
        if scope is None:
Y
Yang Yu 已提交
417
            scope = global_scope()
Y
Yu Yang 已提交
418

419
        cache_key = _get_program_cache_key(feed, fetch_list)
420
        if use_program_cache:
Q
Qiao Longfei 已提交
421 422 423 424 425 426 427 428 429 430
            cached_program = self._get_program_cache(cache_key)
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
            program = cached_program
431
        else:
Q
Qiao Longfei 已提交
432 433 434 435 436 437 438 439 440 441 442
            self.program_caches.pop(cache_key, None)
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
        self.executor.run(program.desc, scope, 0, True, True)
        outs = self._fetch_data(fetch_list, fetch_var_name, scope)
D
dzhwinter 已提交
443 444 445
        if return_numpy:
            outs = as_numpy(outs)
        return outs