transformer.py 53.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define the classes of Transformer neural network
16 17 18 19 20 21 22 23 24 25 26 27
__all__ = [
    'MultiHeadAttention',
    'TransformerEncoderLayer',
    'TransformerEncoder',
    'TransformerDecoderLayer',
    'TransformerDecoder',
    'Transformer',
]

import copy
import collections

28 29 30 31
from .common import Linear, Dropout
from .norm import LayerNorm
from .. import functional as F
from ... import tensor
32
from ...fluid import layers
33
from ...fluid.dygraph import Layer, LayerList
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
from ...fluid.param_attr import ParamAttr


def _convert_param_attr_to_list(param_attr, n):
    """
    If `param_attr` is a list or tuple, convert every element in it to a
    ParamAttr instance. Otherwise, repeat `param_attr` `n` times to
    construct a list, and rename every one by appending a increasing index
    suffix to avoid having same names when `param_attr` contains a name.

    Parameters:
        param_attr (list|tuple|ParamAttr): A list, tuple or something can be
            converted to a ParamAttr instance by `ParamAttr._to_attr`.
        n (int): The times to repeat to construct a list when `param_attr`
            is not a list or tuple.

    Returns:
        list: A list composed of each including cell's `param_attr`.
    """
    if isinstance(param_attr, (list, tuple)):
        assert len(param_attr) == n, (
            "length of param_attr should be %d when it is a list/tuple" % n)
        param_attrs = [ParamAttr._to_attr(attr) for attr in param_attr]
    else:
        param_attrs = []
        attr = ParamAttr._to_attr(param_attr)
        for i in range(n):
            attr_i = copy.deepcopy(attr)
            if attr.name:
                attr_i.name = attr_i.name + "_" + str(i)
            param_attrs.append(attr_i)
    return param_attrs


class MultiHeadAttention(Layer):
    """
    Attention mapps queries and a set of key-value pairs to outputs, and
    Multi-Head Attention performs multiple parallel attention to jointly attending
    to information from different representation subspaces.

    Please refer to `Attention Is All You Need <https://arxiv.org/pdf/1706.03762.pdf>`_
    for more details.

    Parameters:
        embed_dim (int): The expected feature size in the input and output.
        num_heads (int): The number of heads in multi-head attention.
        dropout (float, optional): The dropout probability used on attention
            weights to drop some attention targets. 0 for no dropout. Default 0
        kdim (int, optional): The feature size in key. If None, assumed equal to
            `embed_dim`. Default None.
        vdim (int, optional): The feature size in value. If None, assumed equal to
            `embed_dim`. Default None.
        need_weights (bool, optional): Indicate whether to return the attention
            weights. Default False.
        weight_attr(ParamAttr, optional):  To specify the weight parameter property.
            Default: None, which means the default weight parameter property is used.
            See usage for details in :code:`ParamAttr` .
        bias_attr (ParamAttr, optional): To specify the bias parameter property.
            Default: None, which means the default bias parameter property is used.
            If it is set to False, this layer will not have trainable bias parameter.
            See usage for details in :code:`ParamAttr` .
         
    Examples:

        .. code-block:: python

            import paddle

            # encoder input: [batch_size, sequence_length, d_model]
            query = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, num_heads, query_len, query_len]
            attn_mask = paddle.rand((2, 2, 4, 4))
            multi_head_attn = paddle.MultiHeadAttention(128, 2)
107
            output = multi_head_attn(query, None, None, attn_mask=attn_mask)  # [2, 4, 128]
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    """

    Cache = collections.namedtuple("Cache", ["k", "v"])
    StaticCache = collections.namedtuple("StaticCache", ["k", "v"])

    def __init__(self,
                 embed_dim,
                 num_heads,
                 dropout=0.,
                 kdim=None,
                 vdim=None,
                 need_weights=False,
                 weight_attr=None,
                 bias_attr=None):
        super(MultiHeadAttention, self).__init__()
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.need_weights = need_weights

        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"

        self.q_proj = Linear(
            embed_dim, embed_dim, weight_attr, bias_attr=bias_attr)
        self.k_proj = Linear(
            self.kdim, embed_dim, weight_attr, bias_attr=bias_attr)
        self.v_proj = Linear(
            self.vdim, embed_dim, weight_attr, bias_attr=bias_attr)
        self.out_proj = Linear(
            embed_dim, embed_dim, weight_attr, bias_attr=bias_attr)

    def _prepare_qkv(self, query, key, value, cache=None):
        """
        Prapares linear projected queries, keys and values for usage of subsequnt
        multiple parallel attention. If `cache` is not None, using cached results
        to reduce redundant calculations.

        Parameters:
            query (Tensor): The queries for multi-head attention. It is a
                tensor with shape `[batch_size, query_length, embed_dim]`. The
                data type should be float32 or float64.
            key (Tensor): The keys for multi-head attention. It is
                a tensor with shape `[batch_size, key_length, kdim]`. The
                data type should be float32 or float64. If None, use `query` as
                `key`.
            value (Tensor): The values for multi-head attention. It
                is a tensor with shape `[batch_size, value_length, vdim]`.
                The data type should be float32 or float64. If None, use `query` as
                `value`.
            cache (MultiHeadAttention.Cache|MultiHeadAttention.StaticCache, optional):
                It is a namedtuple with `k` and `v` as fields, and stores tensors
                shaped `[batch_size, num_heads, length, embed_dim]` which are results
                of linear projection, reshape and transpose calculations in
                MultiHeadAttention. If is an instance of `Cache`, `k` and `v`
                fields reserve intermediate results of previous positions, which
                mostly used for decoder self attention. If it is an instance of
                `StaticCache`, `key` and `value` args would be ignored, `k` and
                `v` fields would be used as calculated results on `key` and
                `value`, which mostly used for decoder-encoder cross attention.
                It is only used for inference and should be None for training.
                Default None.

        Returns:
            tuple: A tuple including linear projected keys and values. These two \
                tensors have shapes `[batch_size, n_head, sequence_length, d_key]` \
                and `[batch_size, n_head, sequence_length, d_value]` separately, \
                and their data types are same as inputs.
        """
        q = self.q_proj(query)
180 181
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q = tensor.transpose(x=q, perm=[0, 2, 1, 3])
182 183 184 185 186 187 188 189 190

        if isinstance(cache, self.StaticCache):
            # for encoder-decoder attention in inference and has cached
            k, v = cache.k, cache.v
        else:
            k, v = self.compute_kv(key, value)

        if isinstance(cache, self.Cache):
            # for decoder self-attention in inference
191 192
            k = tensor.concat([cache.k, k], axis=2)
            v = tensor.concat([cache.v, v], axis=2)
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
            cache = self.Cache(k, v)

        return (q, k, v) if cache is None else (q, k, v, cache)

    def compute_kv(self, key, value):
        """
        Applies linear projection on input keys and values, then splits heads
        (reshape and transpose) to get keys and values from different representation
        subspaces. The results are used as key-values pairs for subsequent multiple
        parallel attention.
        
        It is part of calculations in multi-head attention, and is provided as
        a method to pre-compute and prefetch these results, thus we can use them
        to construct cache for inference.

        Parameters:
            key (Tensor): The keys for multi-head attention. It is a tensor
                with shape `[batch_size, sequence_length, kdim]`. The data type
                should be float32 or float64.
            value (Tensor): The values for multi-head attention. It is a tensor
                with shape `[batch_size, sequence_length, vdim]`. The data type
                should be float32 or float64.

        Returns:
            tuple: A tuple including transformed keys and values. Their shapes \
                both are `[batch_size, num_heads, sequence_length, embed_dim // num_heads]`, \
                and their data types are same as inputs.
        """
        k = self.k_proj(key)
        v = self.v_proj(value)
223 224 225 226
        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v = tensor.transpose(x=v, perm=[0, 2, 1, 3])
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        return k, v

    def gen_cache(self, key, value=None, type=Cache):
        """
        Generates cache for `forward` usage in inference accroding to arguments.
        The generated cache is an instance of `MultiHeadAttention.Cache` or an
        instance of `MultiHeadAttention.StaticCache`.

        `Cache` or `StaticCache` is namedtuple with `k` and `v` as fields,
        and it stores tensors shaped `[batch_size, num_heads, length, embed_dim]`
        which are results of linear projection, reshape and transpose calculations
        in MultiHeadAttention.
        
        If the generated cache is an instance of `Cache`, `k` and `v` fields
        reserve intermediate result tensors of previous positions, and the tensors
        are incremental among decoding steps, which mostly are used for decoder
        decoder self attention.
        
        If the generated cache is an instance of `StaticCache`, `k` and `v` fields
        would be used as calculated result tensors on keys an values in `forward`,
        and the tensors keep unchanged among decoding steps, which are mostly used
        for decoder-encoder cross attention.

        The cache is generated as follows:

        1. If `type` is `StaticCache`, apply `compute_kv(key, value)` and use the
        results to create an instance of `StaticCache`.
        
        2. If `type` is `Cache` and `value` is None, generate empty tensors shaped
        `[batch_size, num_heads, 0, embed_dim // num_heads]` and use the results
        to create an instance of `Cache`, where `batch_size` is from the first
        dimension of `key`.

        3. If `type` is `Cache` and `value` is not None, use `key`, `value` to create
        an instance of `Cache`.

        Parameters:
            key (Tensor): The keys for multi-head attention. It is
                a tensor with shape `[batch_size, key_length, kdim]`. The
                data type should be float32 or float64. If `value` is None,
                it is only for batch size and data type reference.
            value (Tensor, optional): The values for multi-head attention. It
                is a tensor with shape `[batch_size, value_length, vdim]`.
                The data type should be float32 or float64. If None, `key` is only
                for batch size reference. Default None.
            type (type): It should be `MultiHeadAttention.StaticCache` or
                `MultiHeadAttention.Cache` to indicate the cache type to generate.
        
        Returns:
            namedtuple: an instance of `Cache` or `StaticCache` accordingly.
        """
        if type == MultiHeadAttention.StaticCache:  # static_kv
            k, v = self.compute_kv(key, value)
            return self.StaticCache(k, v)
        elif value is None:  # incremental_state
            k = layers.fill_constant_batch_size_like(
                input=key,
                shape=[-1, self.num_heads, 0, self.head_dim],
                dtype=key.dtype,
                value=0)
            v = layers.fill_constant_batch_size_like(
                input=key,
                shape=[-1, self.num_heads, 0, self.head_dim],
                dtype=key.dtype,
                value=0)
            return self.Cache(k, v)
        else:
            # incremental_state with initial value, mainly for usage like UniLM
            return self.Cache(key, value)

    def forward(self, query, key, value, attn_mask=None, cache=None):
        """
        Applies multi-head attention to map queries and a set of key-value pairs
        to outputs.

        Parameters:
            query (Tensor): The queries for multi-head attention. It is a
                tensor with shape `[batch_size, query_length, embed_dim]`. The
                data type should be float32 or float64.
            key (Tensor, optional): The keys for multi-head attention. It is
                a tensor with shape `[batch_size, key_length, kdim]`. The
                data type should be float32 or float64. If None, use `query` as
                `key`. Default None.
            value (Tensor, optional): The values for multi-head attention. It
                is a tensor with shape `[batch_size, value_length, vdim]`.
                The data type should be float32 or float64. If None, use `query` as
                `value`. Default None.
            attn_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`,
                where the unwanted positions have `-INF` values and the others
                have 0 values. The data type should be float32 or float64. It can
                be None when nothing wanted or needed to be prevented attention to.
                Default None
            cache (MultiHeadAttention.Cache|MultiHeadAttention.StaticCache, optional):
                It is a namedtuple with `k` and `v` as fields, and stores tensors
                shaped `[batch_size, num_heads, length, embed_dim]` which are results
                of linear projection, reshape and transpose calculations in
                MultiHeadAttention. If it is an instance of `Cache`, `k` and `v`
                fields reserve intermediate results of previous positions, which
                mostly used for decoder self attention. If it is an instance of
                `StaticCache`, `key` and `value` args would be ignored, `k` and
                `v` fields would be used as calculated results on `key` and
                `value`, which mostly used for decoder-encoder cross attention.
                It is only used for inference and should be None for training.
                Default None.

        Returns:
            Tensor|tuple: It is a tensor that has the same shape and data type \
                as `query`, representing attention output. Or a tuple if \
                `need_weights` is True or `cache` is not None. If `need_weights` \
                is True, except for attention output, the tuple also includes \
                the attention weights tensor shaped `[batch_size, num_heads, query_length, key_length]`. \
                If `cache` is not None, the tuple then includes the new cache \
                having the same type as `cache`, and if it is `StaticCache`, it \
                is same as the input `cache`, if it is `Cache`, the new cache \
                reserves tensors concatanating raw tensors with intermediate \
                results of current query.
        """
        key = query if key is None else key
        value = query if value is None else value
        # compute q ,k ,v
        if cache is None:
            q, k, v = self._prepare_qkv(query, key, value, cache)
        else:
            q, k, v, cache = self._prepare_qkv(query, key, value, cache)

        # scale dot product attention
356
        # TODO(guosheng): use tensor.matmul, however it doesn't support `alpha`
357 358 359 360 361
        product = layers.matmul(
            x=q, y=k, transpose_y=True, alpha=self.head_dim**-0.5)
        if attn_mask is not None:
            # TODO(guosheng): support bool mask
            product = product + attn_mask
362
        weights = F.softmax(product)
363
        if self.dropout:
364
            weights = F.dropout(
365
                weights,
366 367 368
                self.dropout,
                training=self.training,
                mode="upscale_in_train")
369

370
        out = tensor.matmul(weights, v)
371 372

        # combine heads
373 374
        out = tensor.transpose(out, perm=[0, 2, 1, 3])
        out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433

        # project to output
        out = self.out_proj(out)

        outs = [out]
        if self.need_weights:
            outs.append(weights)
        if cache is not None:
            outs.append(cache)
        return out if len(outs) == 1 else tuple(outs)


class TransformerEncoderLayer(Layer):
    """
    TransformerEncoderLayer is composed of two sub-layers which are self (multi-head)
    attention and feedforward network. Before and after each sub-layer, pre-process
    and post-precess would be applied on the input and output accordingly. If
    `normalize_before` is True, pre-process is layer normalization and post-precess
    includes dropout, residual connection. Otherwise, no pre-process and post-precess
    includes dropout, residual connection, layer normalization.

    Parameters:
        d_model (int): The expected feature size in the input and output.
        nhead (int): The number of heads in multi-head attention(MHA).
        dim_feedforward (int): The hidden layer size in the feedforward network(FFN).
        dropout (float, optional): The dropout probability used in pre-process
            and post-precess of MHA and FFN sub-layer. Default 0.1
        activation (str, optional): The activation function in the feedforward
            network. Default relu.
        attn_dropout (float, optional): The dropout probability used
            in MHA to drop some attention target. If None, use the value of
            `dropout`. Default None
        act_dropout (float, optional): The dropout probability used after FFN
            activition.  If None, use the value of `dropout`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
            normalization and post-precess includes dropout, residual connection.
            Otherwise, no pre-process and post-precess includes dropout, residual
            connection, layer normalization. Default False
        weight_attr(ParamAttr|tuple, optional): To specify the weight parameter property.
            If it is a tuple, `weight_attr[0]` would be used as `weight_attr` for
            MHA, and `weight_attr[1]` would be used as `weight_attr` for linear in FFN.
            Otherwise, MHA and FFN both use it as `weight_attr` to create parameters.
            Default: None, which means the default weight parameter property is used.
            See usage for details in :code:`ParamAttr` . 
        bias_attr (ParamAttr|tuple, optional): To specify the bias parameter property.
            If it is a tuple, `bias_attr[0]` would be used as `bias_attr` for
            MHA, and `bias_attr[1]` would be used as `bias_attr` for linear in FFN.
            Otherwise, MHA and FFN both use it as `bias_attr` to create parameters.
            The `False` value means the corresponding layer would not have trainable
            bias parameter. See usage for details in :code:`ParamAttr` . Default: None,
            which means the default bias parameter property is used.
            

    Examples:

        .. code-block:: python

            import paddle
434
            from paddle.nn import TransformerEncoderLayer
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474

            # encoder input: [batch_size, src_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, n_head, src_len, src_len]
            attn_mask = paddle.rand((2, 2, 4, 4))
            encoder_layer = TransformerEncoderLayer(128, 2, 512)
            enc_output = encoder_layer(enc_input, attn_mask)  # [2, 4, 128]
    """

    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward,
                 dropout=0.1,
                 activation="relu",
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=False,
                 weight_attr=None,
                 bias_attr=None):
        self._config = locals()
        self._config.pop("self")
        self._config.pop("__class__", None)  # py3

        super(TransformerEncoderLayer, self).__init__()
        attn_dropout = dropout if attn_dropout is None else attn_dropout
        act_dropout = dropout if act_dropout is None else act_dropout
        self.normalize_before = normalize_before

        weight_attrs = _convert_param_attr_to_list(weight_attr, 2)
        bias_attrs = _convert_param_attr_to_list(bias_attr, 2)

        self.self_attn = MultiHeadAttention(
            d_model,
            nhead,
            dropout=attn_dropout,
            weight_attr=weight_attrs[0],
            bias_attr=bias_attrs[0])
        self.linear1 = Linear(
            d_model, dim_feedforward, weight_attrs[1], bias_attr=bias_attrs[1])
475
        self.dropout = Dropout(act_dropout, mode="upscale_in_train")
476 477 478 479
        self.linear2 = Linear(
            dim_feedforward, d_model, weight_attrs[1], bias_attr=bias_attrs[1])
        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
480 481 482
        self.dropout1 = Dropout(dropout, mode="upscale_in_train")
        self.dropout2 = Dropout(dropout, mode="upscale_in_train")
        self.activation = getattr(F, activation)
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

    def forward(self, src, src_mask=None):
        """
        Applies a Transformer encoder layer on the input.

        Parameters:
            src (Tensor): The input of Transformer encoder layer. It is
                a tensor with shape `[batch_size, sequence_length, d_model]`.
                The data type should be float32 or float64.
            src_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`,
                where the unwanted positions have `-INF` values and the others
                have 0 values. The data type should be float32 or float64. It can
                be None when nothing wanted or needed to be prevented attention to.
                Default None

        Returns:
            Tensor: The output of Transformer encoder layer. It is a tensor that \
                has the same shape and data type as `enc_input`.
        """
        residual = src
        if self.normalize_before:
            src = self.norm1(src)
        # TODO(guosheng): Add cache for encoder for the usage like UniLM
        src = self.self_attn(src, src, src, src_mask)
        src = residual + self.dropout1(src)
        if not self.normalize_before:
            src = self.norm1(src)

        residual = src
        if self.normalize_before:
            src = self.norm2(src)
        src = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = residual + self.dropout2(src)
        if not self.normalize_before:
            src = self.norm2(src)
        return src


class TransformerEncoder(Layer):
    """
    TransformerEncoder is a stack of N encoder layers. 

    Parameters:
        encoder_layer (Layer): an instance of the `TransformerEncoderLayer`. It
            would be used as the first layer, and the other layers would be created
            according to the configurations of it.
        num_layers (int): The number of encoder layers to be stacked.
        norm (LayerNorm, optional): the layer normalization component. If provided,
            apply layer normalization on the output of last encoder layer.

    Examples:

        .. code-block:: python

            import paddle
541
            from paddle.nn import TransformerEncoderLayer, TransformerEncoder
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644

            # encoder input: [batch_size, src_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, n_head, src_len, src_len]
            attn_mask = paddle.rand((2, 2, 4, 4))
            encoder_layer = TransformerEncoderLayer(128, 2, 512)
            encoder = TransformerEncoder(encoder_layer, 2)
            enc_output = encoder(enc_input, attn_mask)  # [2, 4, 128]
    """

    def __init__(self, encoder_layer, num_layers, norm=None):
        super(TransformerEncoder, self).__init__()
        self.layers = LayerList([(encoder_layer if i == 0 else
                                  type(encoder_layer)(**encoder_layer._config))
                                 for i in range(num_layers)])
        self.num_layers = num_layers
        self.norm = norm

    def forward(self, src, src_mask=None):
        """
        Applies a stack of N Transformer encoder layers on inputs. If `norm` is
        provided, also applies layer normalization on the output of last encoder
        layer.

        Parameters:
            src (Tensor): The input of Transformer encoder. It is a tensor
                with shape `[batch_size, sequence_length, d_model]`. The data
                type should be float32 or float64.
            src_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`,
                where the unwanted positions have `-INF` values and the others
                have 0 values. The data type should be float32 or float64. It can
                be None when nothing wanted or needed to be prevented attention to.
                Default None

        Returns:
            Tensor: The output of Transformer encoder. It is a tensor that \
                has the same shape and data type as `src`.
        """
        output = src

        for mod in self.layers:
            output = mod(output, src_mask=src_mask)

        if self.norm is not None:
            output = self.norm(output)

        return output


class TransformerDecoderLayer(Layer):
    """
    TransformerDecoderLayer is composed of three sub-layers which are decoder
    self (multi-head) attention, decoder-encoder cross attention and feedforward
    network. Before and after each sub-layer, pre-process and post-precess would
    be applied on the input and output accordingly. If `normalize_before` is True,
    pre-process is layer normalization and post-precess includes dropout, residual
    connection. Otherwise, no pre-process and post-precess includes dropout, residual
    connection, layer normalization.

    Parameters:
        d_model (int): The expected feature size in the input and output.
        nhead (int): The number of heads in multi-head attention(MHA).
        dim_feedforward (int): The hidden layer size in the feedforward network(FFN).
        dropout (float, optional): The dropout probability used in pre-process
            and post-precess of MHA and FFN sub-layer. Default 0.1
        activation (str, optional): The activation function in the feedforward
            network. Default relu.
        attn_dropout (float, optional): The dropout probability used
            in MHA to drop some attention target. If None, use the value of
            `dropout`. Default None
        act_dropout (float, optional): The dropout probability used after FFN
            activition.  If None, use the value of `dropout`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
            normalization and post-precess includes dropout, residual connection.
            Otherwise, no pre-process and post-precess includes dropout, residual
            connection, layer normalization. Default False
        weight_attr(ParamAttr|tuple, optional): To specify the weight parameter property.
            If it is a tuple, `weight_attr[0]` would be used as `weight_attr` for
            self attention, `weight_attr[1]` would be used as `weight_attr` for
            cross attention, and `weight_attr[2]` would be used as `weight_attr`
            for linear in FFN. Otherwise, the three sub-layers all uses it as
            `weight_attr` to create parameters. Default: None, which means the
            default weight parameter property is used. See usage for details
            in :ref:`api_fluid_ParamAttr` . 
        bias_attr (ParamAttr|tuple, optional): To specify the bias parameter property.
            If it is a tuple, `bias_attr[0]` would be used as `bias_attr` for
            self attention, `bias_attr[1]` would be used as `bias_attr` for
            cross attention, and `bias_attr[2]` would be used as `bias_attr`
            for linear in FFN. Otherwise, the three sub-layers all uses it as
            `bias_attr` to create parameters. The `False` value means the
            corresponding layer would not have trainable bias parameter. See
            usage for details in :code:`ParamAttr` . Default: None,which means
            the default bias parameter property is used.

    Examples:

        .. code-block:: python

            import paddle
645
            from paddle.nn import TransformerDecoderLayer
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

            # decoder input: [batch_size, tgt_len, d_model]
            dec_input = paddle.rand((2, 4, 128))
            # encoder output: [batch_size, src_len, d_model]
            enc_output = paddle.rand((2, 6, 128))
            # self attention mask: [batch_size, n_head, tgt_len, tgt_len]
            self_attn_mask = paddle.rand((2, 2, 4, 4))
            # cross attention mask: [batch_size, n_head, tgt_len, src_len]
            cross_attn_mask = paddle.rand((2, 2, 4, 6))
            decoder_layer = TransformerDecoderLayer(128, 2, 512)
            output = decoder_layer(dec_input,
                                   enc_output,
                                   self_attn_mask,
                                   cross_attn_mask)  # [2, 4, 128]
    """

    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward,
                 dropout=0.1,
                 activation="relu",
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=False,
                 weight_attr=None,
                 bias_attr=None):
        self._config = locals()
        self._config.pop("self")
        self._config.pop("__class__", None)  # py3

        super(TransformerDecoderLayer, self).__init__()
        attn_dropout = dropout if attn_dropout is None else attn_dropout
        act_dropout = dropout if act_dropout is None else act_dropout
        self.normalize_before = normalize_before

        weight_attrs = _convert_param_attr_to_list(weight_attr, 3)
        bias_attrs = _convert_param_attr_to_list(bias_attr, 3)

        self.self_attn = MultiHeadAttention(
            d_model,
            nhead,
            dropout=attn_dropout,
            weight_attr=weight_attrs[0],
            bias_attr=bias_attrs[0])
        self.cross_attn = MultiHeadAttention(
            d_model,
            nhead,
            dropout=attn_dropout,
            weight_attr=weight_attrs[1],
            bias_attr=bias_attrs[1])
        self.linear1 = Linear(
            d_model, dim_feedforward, weight_attrs[2], bias_attr=bias_attrs[2])
699
        self.dropout = Dropout(act_dropout, mode="upscale_in_train")
700 701 702 703 704
        self.linear2 = Linear(
            dim_feedforward, d_model, weight_attrs[2], bias_attr=bias_attrs[2])
        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.norm3 = LayerNorm(d_model)
705 706 707 708
        self.dropout1 = Dropout(dropout, mode="upscale_in_train")
        self.dropout2 = Dropout(dropout, mode="upscale_in_train")
        self.dropout3 = Dropout(dropout, mode="upscale_in_train")
        self.activation = getattr(F, activation)
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

    def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, cache=None):
        """
        Applies a Transformer decoder layer on the input.

        Parameters:
            tgt (Tensor): The input of Transformer decoder layer. It is a tensor
                with shape `[batch_size, target_length, d_model]`. The data type
                should be float32 or float64.
            memory (Tensor): The output of Transformer encoder. It is a tensor
                with shape `[batch_size, source_length, d_model]`. The data type
                should be float32 or float64.
            tgt_mask (Tensor, optional): A tensor used in self attention
                to prevents attention to some unwanted positions, usually the
                the subsequent positions. It is a tensor with shape broadcasted
                to `[batch_size, n_head, target_length, target_length]`,
                where the unwanted positions have `-INF` values and the others
                have 0 values. The data type should be float32 or float64. It can
                be None when nothing wanted or needed to be prevented attention to.
                Default None
            memory_mask (Tensor, optional): A tensor used in decoder-encoder
                cross attention to prevents attention to some unwanted positions,
                usually the paddings. It is a tensor with shape broadcasted to
               `[batch_size, n_head, target_length, source_length]`, where the
                unwanted positions have `-INF` values and the others have 0 values.
                The data type should be float32 or float64. It can be None when
                nothing wanted or needed to be prevented attention to. Default None
            cache (tuple, optional): It is a tuple( :code:`(incremental_cache, static_cache)` ),
                `incremental_cache` is an instance of `MultiHeadAttention.Cache`,
                `static_cache` is an instance of `MultiHeadAttention.StaticCache.
                See `TransformerDecoderLayer.gen_cache` for more details. It is
                only used for inference and should be None for training. Default
                None.

        Returns:
            Tensor|tuple: It is a tensor that has the same shape and data type \
                as `tgt`, representing the output of Transformer decoder layer. \
                Or a tuple if `cache` is not None, except for decoder layer output, \
                the tuple includes the new cache which is same as input `cache` \
                argument but `incremental_cache` in it has an incremental length. \
                See `MultiHeadAttention.gen_cache` and `MultiHeadAttention.forward` \
                for more details.
        """
        residual = tgt
        if self.normalize_before:
            tgt = self.norm1(tgt)
        if cache is None:
            tgt = self.self_attn(tgt, tgt, tgt, tgt_mask, None)
        else:
            tgt, incremental_cache = self.self_attn(tgt, tgt, tgt, tgt_mask,
                                                    cache[0])
        tgt = residual + self.dropout1(tgt)
        if not self.normalize_before:
            tgt = self.norm1(tgt)

        residual = tgt
        if self.normalize_before:
            tgt = self.norm2(tgt)
        if cache is None:
            tgt = self.cross_attn(tgt, memory, memory, memory_mask, None)
        else:
            tgt, static_cache = self.cross_attn(tgt, memory, memory,
                                                memory_mask, cache[1])
        tgt = residual + self.dropout2(tgt)
        if not self.normalize_before:
            tgt = self.norm2(tgt)

        residual = tgt
        if self.normalize_before:
            tgt = self.norm3(tgt)
        tgt = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = residual + self.dropout3(tgt)
        if not self.normalize_before:
            tgt = self.norm3(tgt)
        return tgt if cache is None else (tgt, (incremental_cache,
                                                static_cache))

    def gen_cache(self, memory):
        """
        Generates cache for `forward` usage. The generated cache is a tuple
        composed of an instance of `MultiHeadAttention.Cache` and an instance
        of `MultiHeadAttention.StaticCache`.

        Parameters:
            memory (Tensor): The output of Transformer encoder. It is a tensor
                with shape `[batch_size, source_length, d_model]`. The data type
                should be float32 or float64.

        Returns:
            tuple: It is a tuple( :code:`(incremental_cache, static_cache)` ). \
                `incremental_cache` is an instance of `MultiHeadAttention.Cache` \
                produced by `self_attn.gen_cache(memory, MultiHeadAttention.Cache)`, \
                it reserves two tensors shaped `[batch_size, nhead, 0, d_model // nhead]`. \
                `static_cache` is an instance of `MultiHeadAttention.StaticCache` \
                produced by `cross_attn.gen_cache(memory, MultiHeadAttention.StaticCache)`, \
                it reserves two tensors shaped `[batch_size, nhead, source_length, d_model // nhead]`.
                See `MultiHeadAttention.gen_cache` and `MultiHeadAttention.forward` \
                for more details.
        """
        incremental_cache = self.self_attn.gen_cache(
            memory, type=self.self_attn.Cache)
        static_cache = self.cross_attn.gen_cache(
            memory, memory, type=self.cross_attn.StaticCache)
        return incremental_cache, static_cache


class TransformerDecoder(Layer):
    """
    TransformerDecoder is a stack of N decoder layers. 

    Parameters:
        decoder_layer (Layer): an instance of the `TransformerDecoderLayer`. It
            would be used as the first layer, and the other layers would be created
            according to the configurations of it.
        num_layers (int): The number of decoder layers to be stacked.
        norm (LayerNorm, optional): the layer normalization component. If provided,
            apply layer normalization on the output of last encoder layer.

    Examples:

        .. code-block:: python

            import paddle
832
            from paddle.nn import TransformerDecoderLayer, TransformerDecoder
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014

            # decoder input: [batch_size, tgt_len, d_model]
            dec_input = paddle.rand((2, 4, 128))
            # encoder output: [batch_size, src_len, d_model]
            enc_output = paddle.rand((2, 6, 128))
            # self attention mask: [batch_size, n_head, tgt_len, tgt_len]
            self_attn_mask = paddle.rand((2, 2, 4, 4))
            # cross attention mask: [batch_size, n_head, tgt_len, src_len]
            cross_attn_mask = paddle.rand((2, 2, 4, 6))
            decoder_layer = TransformerDecoderLayer(128, 2, 512)
            decoder = TransformerDecoder(decoder_layer, 2)
            output = decoder(dec_input,
                             enc_output,
                             self_attn_mask,
                             cross_attn_mask)  # [2, 4, 128]
    """

    def __init__(self, decoder_layer, num_layers, norm=None):
        super(TransformerDecoder, self).__init__()
        self.layers = LayerList([(decoder_layer if i == 0 else
                                  type(decoder_layer)(**decoder_layer._config))
                                 for i in range(num_layers)])
        self.num_layers = num_layers
        self.norm = norm

    def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, cache=None):
        """
        Applies a stack of N Transformer decoder layers on inputs. If `norm` is
        provided, also applies layer normalization on the output of last decoder
        layer.

        Parameters:
            tgt (Tensor): The input of Transformer decoder. It is a tensor
                with shape `[batch_size, target_length, d_model]`. The data type
                should be float32 or float64.
            memory (Tensor): The output of Transformer encoder. It is a tensor
                with shape `[batch_size, source_length, d_model]`. The data type
                should be float32 or float64.
            tgt_mask (Tensor, optional): A tensor used in self attention
                to prevents attention to some unwanted positions, usually the
                the subsequent positions. It is a tensor with shape broadcasted
                to `[batch_size, n_head, target_length, target_length]`,
                where the unwanted positions have `-INF` values and the others
                have 0 values. The data type should be float32 or float64. It can
                be None when nothing wanted or needed to be prevented attention to.
                Default None
            memory_mask (Tensor, optional): A tensor used in decoder-encoder
                cross attention to prevents attention to some unwanted positions,
                usually the paddings. It is a tensor with shape broadcasted to
               `[batch_size, n_head, target_length, source_length]`, where the
                unwanted positions have `-INF` values and the others have 0 values.
                The data type should be float32 or float64. It can be None when
                nothing wanted or needed to be prevented attention to. Default None
            cache (list, optional): It is a list, and each element in the list
                is a tuple( :code:`(incremental_cache, static_cache)` ). See
                `TransformerDecoder.gen_cache` for more details. It is only
                used for inference and should be None for training. Default None.

        Returns:
            Tensor|tuple: It is a tensor that has the same shape and data type \
                as `tgt`, representing the output of Transformer decoder. \
                Or a tuple if `cache` is not None, except for decoder output, \
                the tuple includes the new cache which is same as input `cache` \
                argument but `incremental_cache` in it has an incremental length. \
                See `MultiHeadAttention.gen_cache` and `MultiHeadAttention.forward` \
                for more details.
        """
        output = tgt
        new_caches = []
        for i, mod in enumerate(self.layers):
            if cache is None:
                output = mod(output,
                             memory,
                             tgt_mask=tgt_mask,
                             memory_mask=memory_mask,
                             cache=None)
            else:
                output, new_cache = mod(output,
                                        memory,
                                        tgt_mask=tgt_mask,
                                        memory_mask=memory_mask,
                                        cache=cache[i])
                new_caches.append(new_cache)

        if self.norm is not None:
            output = self.norm(output)

        return output if cache is None else (output, new_caches)

    def gen_cache(self, memory, do_zip=False):
        """
        Generates cache for `forward` usage. The generated cache is a list, and
        each element in it is a tuple( :code:`(incremental_cache, static_cache)` )
        produced by `TransformerDecoderLayer.gen_cache`. See `TransformerDecoderLayer.gen_cache`
        for more details. If `do_zip` is True, apply `zip` on these tuples to get
        a list with two elements.


        Parameters:
            memory (Tensor): The output of Transformer encoder. It is a tensor
                with shape `[batch_size, source_length, d_model]`. The data type
                should be float32 or float64.
            do_zip (bool, optional): Indicate whether to apply `zip` on the tuples.
                If True, return a list with two elements. Default False

        Returns:
            list: It is a list, and each element in the list is a tuple produced \
                by `TransformerDecoderLayer.gen_cache(memory)`. See `TransformerDecoderLayer.gen_cache` \
                for more details. If `do_zip` is True, apply `zip` on these tuples \
                and return a list with two elements.
        """
        cache = [layer.gen_cache(memory) for layer in self.layers]
        if do_zip:
            cache = list(zip(*cache))
        return cache


class Transformer(Layer):
    """
    A Transformer model composed of an instance of `TransformerEncoder` and an
    instance of `TransformerDecoder`. While the embedding layer and output layer
    are not included.

    Please refer to `Attention is all you need <http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf>`_ ,
    and see `TransformerEncoder` and `TransformerDecoder` for more details.
    
    Users can configurate the model architecture with corresponding parameters.
    Note the usage of `normalize_before` representing where to apply layer
    normalization (in pre-process or post-precess of multi-head attention or FFN),
    and some transformer like models are different on this, such as
    `BERT <https://arxiv.org/abs/1810.04805>`_ and `GPT2 <https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf>`_ . 
    The default architecture here places layer normalization in post-process and
    applies another layer normalization on the output of last encoder/decoder layer.

    Parameters:
        d_model (int): The expected feature size in the encoder/decoder input
            and output.
        nhead (int): The number of heads in multi-head attention(MHA).
        num_encoder_layers (int): The number of layers in encoder.
        num_encoder_layers (int): The number of layers in decoder.
        dim_feedforward (int): The hidden layer size in the feedforward network(FFN).
        dropout (float, optional): The dropout probability used in pre-process
            and post-precess of MHA and FFN sub-layer. Default 0.1
        activation (str, optional): The activation function in the feedforward
            network. Default relu.
        attn_dropout (float, optional): The dropout probability used
            in MHA to drop some attention target. If None, use the value of
            `dropout`. Default None
        act_dropout (float, optional): The dropout probability used after FFN
            activition.  If None, use the value of `dropout`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
            normalization and post-precess includes dropout, residual connection.
            Otherwise, no pre-process and post-precess includes dropout, residual
            connection, layer normalization. Default False
        weight_attr(ParamAttr|tuple, optional): To specify the weight parameter property.
            If it is a tuple, `weight_attr[0]` would be used as `weight_attr` for
            self attention, `weight_attr[1]` would be used as `weight_attr` for
            cross attention, and `weight_attr[2]` would be used as `weight_attr`
            for linear in FFN. Otherwise, the three sub-layers all uses it as
            `weight_attr` to create parameters. Default: None, which means the
            default weight parameter property is used. See usage for details
            in :code:`ParamAttr` . 
        bias_attr (ParamAttr|tuple, optional): To specify the bias parameter property.
            If it is a tuple, `bias_attr[0]` would be used as `bias_attr` for
            self attention, `bias_attr[1]` would be used as `bias_attr` for
            cross attention, and `bias_attr[2]` would be used as `bias_attr`
            for linear in FFN. Otherwise, the three sub-layers all uses it as
            `bias_attr` to create parameters. The `False` value means the
            corresponding layer would not have trainable bias parameter. See
            usage for details in :code:`ParamAttr` . Default: None,which means
            the default bias parameter property is used.
        custom_encoder (Layer): If custom encoder is provided, use it as the encoder.
            Default None
        custom_decoder (Layer): If custom decoder is provided, use it as the decoder.
            Default None

    Examples:

        .. code-block:: python

            import paddle
1015
            from paddle.nn import Transformer
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

            # src: [batch_size, tgt_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # tgt: [batch_size, src_len, d_model]
            dec_input = paddle.rand((2, 6, 128))
            # src_mask: [batch_size, n_head, src_len, src_len]
            enc_self_attn_mask = paddle.rand((2, 2, 4, 4))
            # tgt_mask: [batch_size, n_head, tgt_len, tgt_len]
            dec_self_attn_mask = paddle.rand((2, 2, 6, 6))
            # memory_mask: [batch_size, n_head, tgt_len, src_len]
            cross_attn_mask = paddle.rand((2, 2, 6, 4))
            transformer = Transformer(128, 2, 4, 4, 512)
            output = transformer(enc_input,
                                 dec_input,
                                 enc_self_attn_mask,
                                 dec_self_attn_mask,
                                 cross_attn_mask)  # [2, 6, 128]
    """

    def __init__(self,
                 d_model=512,
                 nhead=8,
                 num_encoder_layers=6,
                 num_decoder_layers=6,
                 dim_feedforward=2048,
                 dropout=0.1,
                 activation="relu",
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=False,
                 weight_attr=None,
                 bias_attr=None,
                 custom_encoder=None,
                 custom_decoder=None):
        super(Transformer, self).__init__()

        if custom_encoder is not None:
            self.encoder = custom_encoder
        else:
            encoder_layer = TransformerEncoderLayer(
                d_model, nhead, dim_feedforward, dropout, activation,
                attn_dropout, act_dropout, normalize_before, weight_attr,
                bias_attr)
            encoder_norm = LayerNorm(d_model)
            self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers,
                                              encoder_norm)

        if custom_decoder is not None:
            self.decoder = custom_decoder
        else:
            decoder_layer = TransformerDecoderLayer(
                d_model, nhead, dim_feedforward, dropout, activation,
                attn_dropout, act_dropout, normalize_before, weight_attr,
                bias_attr)
            decoder_norm = LayerNorm(d_model)
            self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers,
                                              decoder_norm)

        self.d_model = d_model
        self.nhead = nhead

    def forward(self, src, tgt, src_mask=None, tgt_mask=None, memory_mask=None):
        """
        Applies a Transformer model on the inputs.

        Parameters:
            src (Tensor): The input of Transformer encoder. It is a tensor
                with shape `[batch_size, source_length, d_model]`. The data type
                should be float32 or float64.
            tgt (Tensor): The input of Transformer decoder. It is a tensor
                with shape `[batch_size, target_length, d_model]`. The data type
                should be float32 or float64.
            memory (Tensor): The output of Transformer encoder. It is a tensor
                with shape `[batch_size, source_length, d_model]`. The data type
                should be float32 or float64.
            tgt_mask (Tensor, optional): A tensor used in self attention
                to prevents attention to some unwanted positions, usually the
                the subsequent positions. It is a tensor with shape broadcasted
                to `[batch_size, n_head, target_length, target_length]`,
                where the unwanted positions have `-INF` values and the others
                have 0 values. The data type should be float32 or float64. It can
                be None when nothing wanted or needed to be prevented attention to.
                Default None
            memory_mask (Tensor, optional): A tensor used in decoder-encoder
                cross attention to prevents attention to some unwanted positions,
                usually the paddings. It is a tensor with shape broadcasted to
               `[batch_size, n_head, target_length, source_length]`, where the
                unwanted positions have `-INF` values and the others have 0 values.
                The data type should be float32 or float64. It can be None when
                nothing wanted or needed to be prevented attention to. Default None

        Returns:
            Tensor: It is a tensor that has the same shape and data type \
                as `tgt`, representing the output of Transformer decoder.
        """
        memory = self.encoder(src, src_mask=src_mask)
        output = self.decoder(
            tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask)
        return output