pool_mkldnn_op.cc 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

X
xiaoli.liu@intel.com 已提交
15
#include "paddle/fluid/framework/data_layout_transform.h"
16 17
#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24
using framework::DataLayout;
using mkldnn::memory;
25
using mkldnn::pooling_backward;
26 27 28 29 30
using mkldnn::pooling_forward;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
31

32 33 34 35
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
36 37 38
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Pool must use CPUPlace"));
39 40
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
41
    const auto& mkldnn_engine = dev_ctx.GetEngine();
42 43 44 45

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

46 47 48
    platform::PoolingMKLDNNHandler<T> handler(ctx, dev_ctx, mkldnn_engine,
                                              ctx.GetPlace(), input, output,
                                              ctx.OutputName("Out"));
49 50 51 52

    auto src_memory = handler.AcquireSrcMemory(input);
    auto dst_memory = handler.AcquireDstMemory(output);

A
Adam 已提交
53
    auto pool_p = handler.AcquireForwardPrimitive();
54

A
Adam 已提交
55
    mkldnn::stream astream(dev_ctx.GetEngine());
56 57
    if ((ctx.Attr<bool>("is_test") == false) &&
        (ctx.Attr<std::string>("pooling_type") == "max")) {
58
      // Training
A
Adam 已提交
59 60 61 62
      auto workspace_memory = handler.AcquireWorkspaceMemory();
      pool_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory},
                                {MKLDNN_ARG_DST, *dst_memory},
                                {MKLDNN_ARG_WORKSPACE, *workspace_memory}});
63 64
    } else {
      // Inference
A
Adam 已提交
65 66
      pool_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory},
                                {MKLDNN_ARG_DST, *dst_memory}});
67
    }
A
Adam 已提交
68
    astream.wait();
69 70

    output->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
71
    output->set_format(platform::GetMKLDNNFormat(*dst_memory));
72 73 74 75 76 77 78
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
79 80 81
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL PoolGrad must use CPUPlace"));
82 83 84 85
    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

86 87
    PADDLE_ENFORCE_EQ(in_x->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
A
Adam 已提交
88
    PADDLE_ENFORCE_NE(in_x->format(), MKLDNNMemoryFormat::undef,
89
                      "Wrong format set for Input tensor");
90

91 92
    PADDLE_ENFORCE_EQ(out_grad->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input output_grad tensor");
A
Adam 已提交
93
    PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
94 95 96 97
                      "Wrong format set for Input output_grad tensor");

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
98 99
        "is_test attribute should be set to False in training phase.");

100
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
A
Adam 已提交
101 102 103 104 105 106 107 108 109 110

    std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

111 112
    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
113

114 115 116 117 118 119
    auto in_x_dims = in_x->dims();
    framework::DDim data_dims =
        framework::slice_ddim(in_x_dims, 2, in_x_dims.size());

    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
120 121
    }

122 123 124
    UpdatePadding(&paddings, global_pooling, 0, padding_algorithm, data_dims,
                  strides, ksize);

125 126 127
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

128 129
    std::vector<mkldnn::primitive> pipeline;

A
Adam 已提交
130 131
    auto diff_src_tz = paddle::framework::vectorize<int64_t>(in_x_grad->dims());
    auto diff_dst_tz = paddle::framework::vectorize<int64_t>(out_grad->dims());
132

133 134
    // Get an unique name from "argument" name of "Out" variable
    // This name will be used as key when referring info from device context
135
    const std::string key = platform::CreateKey(
136
        diff_src_tz, pooling_type, ksize, strides, paddings,
H
hong 已提交
137
        memory::data_type::f32, in_x->format(), ctx.InputName("Out"));
138

139 140 141 142
    platform::PoolingMKLDNNHandler<T> handler(
        diff_dst_tz, diff_src_tz, ksize, strides, paddings, pooling_type,
        ctx.Attr<bool>("ceil_mode"), in_x->format(), out_grad->format(),
        paddle::framework::ToMKLDNNDataType(out_grad->type()), dev_ctx,
H
hong 已提交
143
        ctx.GetPlace(), ctx.InputName("Out"), ctx.Attr<bool>("exclusive"));
144 145 146 147

    auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory = handler.AcquireDiffSrcMemory(in_x_grad);

A
Adam 已提交
148
    auto pool_bwd_p = handler.AcquireBackwardPrimitive();
149

A
Adam 已提交
150
    mkldnn::stream astream(dev_ctx.GetEngine());
151 152
    if (pooling_type == "max") {
      // Max - pooling needs Workspace
A
Adam 已提交
153 154 155 156
      auto workspace_memory = handler.AcquireWorkspaceMemory();
      pool_bwd_p->execute(astream, {{MKLDNN_ARG_DIFF_SRC, *diff_src_memory},
                                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory},
                                    {MKLDNN_ARG_WORKSPACE, *workspace_memory}});
157 158
    } else {
      // Average Pooling
A
Adam 已提交
159 160
      pool_bwd_p->execute(astream, {{MKLDNN_ARG_DIFF_SRC, *diff_src_memory},
                                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory}});
161
    }
A
Adam 已提交
162
    astream.wait();
163 164

    in_x_grad->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
165
    in_x_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory));
166 167 168 169 170 171
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

172 173
namespace ops = paddle::operators;

174
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaoli.liu@intel.com 已提交
175 176 177 178
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
                   ops::PoolMKLDNNOpKernel<uint8_t>);

179
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
180
                   ops::PoolMKLDNNGradOpKernel<float>);