BlockExpandLayer.cpp 4.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "BlockExpandLayer.h"

#include "paddle/utils/Logging.h"

namespace paddle {

REGISTER_LAYER(blockexpand, BlockExpandLayer);

bool BlockExpandLayer::init(const LayerMap& layerMap,
                            const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  CHECK_EQ(config_.inputs_size(), 1);
  const BlockExpandConfig& blockConf = config_.inputs(0).block_expand_conf();
  blockH_ = blockConf.block_y();
  blockW_ = blockConf.block_x();
  strideH_ = blockConf.stride_y();
  strideW_ = blockConf.stride_x();
  paddingH_ = blockConf.padding_y();
  paddingW_ = blockConf.padding_x();
  channels_ = blockConf.channels();
  imgSizeH_ = blockConf.img_size_y();
  imgSizeW_ = blockConf.img_size_x();

40 41 42 43
  std::vector<size_t> strides = {(size_t)strideH_, (size_t)strideW_};
  std::vector<size_t> paddings = {(size_t)paddingH_, (size_t)paddingW_};
  std::vector<size_t> blocks = {(size_t)blockH_, (size_t)blockW_};
  createFunction(forward_,
44
                 "BlockExpand",
45 46 47 48
                 FuncConfig()
                     .set("strides", strides)
                     .set("paddings", paddings)
                     .set("blocks", blocks));
49
  createFunction(backward_,
50
                 "BlockExpandGrad",
51 52 53 54
                 FuncConfig()
                     .set("strides", strides)
                     .set("paddings", paddings)
                     .set("blocks", blocks));
55

Z
zhangjinchao01 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69
  return true;
}

size_t BlockExpandLayer::getBlockNum() {
  CHECK_EQ(inputLayers_.size(), 1UL);
  const BlockExpandConfig& blockConf = config_.inputs(0).block_expand_conf();
  imgSizeH_ = inputLayers_[0]->getOutput().getFrameHeight();
  imgSizeW_ = inputLayers_[0]->getOutput().getFrameWidth();
  if (imgSizeH_ == 0) {
    imgSizeH_ = blockConf.img_size_y();
  }
  if (imgSizeW_ == 0) {
    imgSizeW_ = blockConf.img_size_x();
  }
70
  size_t tmpH = 2 * paddingH_ + imgSizeH_ - blockH_;
Z
zhangjinchao01 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
  outputH_ = (int)tmpH < 0 ? 1 : 1 + (tmpH + strideH_ - 1) / strideH_;
  size_t tmpW = 2 * paddingW_ + imgSizeW_ - blockW_;
  outputW_ = (int)tmpW < 0 ? 1 : 1 + (tmpW + strideW_ - 1) / strideW_;

  return outputH_ * outputW_;
}

void BlockExpandLayer::forward(PassType passType) {
  Layer::forward(passType);

  size_t batchSize = inputLayers_[0]->getOutputValue()->getHeight();
  size_t blockNum = getBlockNum();
  size_t blockSize = blockH_ * blockW_ * channels_;
  resetOutput(blockNum * batchSize, blockSize);

86 87 88 89 90 91 92 93 94 95 96
  // calculate output_.value
  inputShape_ = TensorShape({batchSize, channels_, imgSizeH_, imgSizeW_});
  outputShape_ = TensorShape({batchSize, blockNum, blockSize});
  BufferArgs inputs;
  BufferArgs outputs;
  inputs.addArg(*getInputValue(0), inputShape_);
  outputs.addArg(*getOutputValue(), outputShape_, ASSIGN_TO);
  forward_[0]->calc(inputs, outputs);

  // calculate output_.sequenceStartPositions and output_.cpuSequenceDims
  Argument& out = getOutput();
97 98
  ICpuGpuVector::resizeOrCreate(
      out.sequenceStartPositions, batchSize + 1, false);
Z
zhangjinchao01 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
  IVector::resizeOrCreate(out.cpuSequenceDims, 2 * batchSize, false);
  int* start = out.sequenceStartPositions->getMutableData(false);
  int* dims = out.cpuSequenceDims->getData();
  for (size_t i = 0; i < batchSize; i++) {
    start[i] = i * blockNum;
    dims[2 * i] = outputH_;
    dims[2 * i + 1] = outputW_;
  }
  start[batchSize] = batchSize * blockNum;
}

void BlockExpandLayer::backward(const UpdateCallback& callback) {
  /* Calculate the input layers error */
112 113 114 115 116 117
  if (getInputGrad(0)) {
    BufferArgs inputs;
    BufferArgs outputs;
    inputs.addArg(*getOutputGrad(), outputShape_);
    outputs.addArg(*getInputGrad(0), inputShape_, ADD_TO);
    backward_[0]->calc(inputs, outputs);
Z
zhangjinchao01 已提交
118 119 120 121
  }
}

}  // namespace paddle