test_custom_concat.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import unittest
import numpy as np

import paddle
import paddle.static as static
from paddle.utils.cpp_extension import load, get_build_directory
from paddle.utils.cpp_extension.extension_utils import run_cmd
from utils import paddle_includes, extra_cc_args, extra_nvcc_args

# Because Windows don't use docker, the shared lib already exists in the
# cache dir, it will not be compiled again unless the shared lib is removed.
file = '{}\\custom_relu_module_jit\\custom_relu_module_jit.pyd'.format(
    get_build_directory())
if os.name == 'nt' and os.path.isfile(file):
    cmd = 'del {}'.format(file)
    run_cmd(cmd, True)

if os.name == 'nt':
    test_include = "..\\python\\paddle\\fluid\\tests\\custom_op"
else:
    test_include = "../python/paddle/fluid/tests/custom_op"
paddle_includes.append(test_include)

custom_ops = load(
    name='custom_concat_jit',
    sources=['custom_concat_op.cc'],
    extra_include_paths=paddle_includes,  # add for Coverage CI
    extra_cxx_cflags=extra_cc_args,  # test for cc flags
    extra_cuda_cflags=extra_nvcc_args,  # test for nvcc flags
    verbose=True)


48 49
def concat_dynamic(func, dtype, np_inputs, axis_v, with_attr=False):
    paddle.set_device("cpu")
50 51
    inputs = [
        paddle.to_tensor(
52
            x, dtype=dtype, stop_gradient=False) for x in np_inputs
53
    ]
54 55 56 57
    if with_attr:
        axis = axis_v
    else:
        axis = paddle.full(shape=[1], dtype='int64', fill_value=axis_v)
58 59 60 61 62 63 64
    out = func(inputs, axis)
    out.stop_gradient = False
    out.backward()
    grad_inputs = [x.grad for x in inputs]
    return out.numpy(), grad_inputs


65
def concat_static(func, dtype, np_inputs, axis_v, with_attr=False):
66
    paddle.enable_static()
67
    paddle.set_device("cpu")
68 69 70 71
    with static.scope_guard(static.Scope()):
        with static.program_guard(static.Program()):
            x1 = static.data(name="x1", shape=[2, 3], dtype=dtype)
            x2 = static.data(name="x2", shape=[2, 3], dtype=dtype)
72 73 74 75
            if with_attr:
                axis = axis_v
            else:
                axis = paddle.full(shape=[1], dtype='int64', fill_value=axis_v)
76 77 78 79 80 81 82 83 84 85
            x1.stop_gradient = False
            x2.stop_gradient = False
            out = func([x1, x2], axis)
            # mean only support float, so here use sum
            sum_out = paddle.sum(out)
            static.append_backward(sum_out)

            exe = static.Executor()
            exe.run(static.default_startup_program())

86 87 88 89 90 91 92
            if with_attr:
                feed_dict = {
                    "x1": np_inputs[0].astype(dtype),
                    "x2": np_inputs[1].astype(dtype)
                }
            else:
                feed_dict = {
93 94 95
                    "x1": np_inputs[0].astype(dtype),
                    "x2": np_inputs[1].astype(dtype),
                    "axis": axis
96 97 98 99
                }
            out_v, x1_grad_v, x2_grad_v = exe.run(
                static.default_main_program(),
                feed=feed_dict,
100 101 102 103 104 105 106 107 108 109 110 111 112 113
                fetch_list=[out.name, x1.name + "@GRAD", x2.name + "@GRAD"])
    paddle.disable_static()
    return out_v, x1_grad_v, x2_grad_v


class TestCustomConcatDynamicAxisJit(unittest.TestCase):
    def setUp(self):
        self.dtypes = ['float32', 'float64', 'int32', 'int64']
        self.np_inputs = [
            np.array([[1, 2, 3], [4, 5, 6]]),
            np.array([[11, 12, 13], [14, 15, 16]])
        ]
        self.axises = [0, 1]

114 115 116 117 118 119
    def check_output(self, out, pd_out, name):
        self.assertTrue(
            np.array_equal(out, pd_out),
            "custom op {}: {},\n paddle api {}: {}".format(name, out, name,
                                                           pd_out))

120
    def test_dynamic(self):
121 122 123 124 125 126 127 128 129 130
        for dtype in self.dtypes:
            for axis in self.axises:
                out, grad_inputs = concat_dynamic(custom_ops.custom_concat,
                                                  dtype, self.np_inputs, axis)
                pd_out, pd_grad_inputs = concat_dynamic(paddle.concat, dtype,
                                                        self.np_inputs, axis)

                self.check_output(out, pd_out, "out")
                for x_grad, pd_x_grad in zip(grad_inputs, pd_grad_inputs):
                    self.check_output(x_grad, pd_x_grad, "x_grad")
131 132

    def test_static(self):
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        for dtype in self.dtypes:
            for axis in self.axises:
                out, x1_grad, x2_grad = concat_static(
                    custom_ops.custom_concat, dtype, self.np_inputs, axis)
                pd_out, pd_x1_grad, pd_x2_grad = concat_static(
                    paddle.concat, dtype, self.np_inputs, axis)

                self.check_output(out, pd_out, "out")
                self.check_output(x1_grad, pd_x1_grad, "x1_grad")
                self.check_output(x2_grad, pd_x2_grad, "x2_grad")

    def test_dynamic_with_attr(self):
        for dtype in self.dtypes:
            for axis in self.axises:
                out, grad_inputs = concat_dynamic(
                    custom_ops.custom_concat_with_attr, dtype, self.np_inputs,
                    axis, True)
                pd_out, pd_grad_inputs = concat_dynamic(
                    paddle.concat, dtype, self.np_inputs, axis, True)

                self.check_output(out, pd_out, "out")
                for x_grad, pd_x_grad in zip(grad_inputs, pd_grad_inputs):
                    self.check_output(x_grad, pd_x_grad, "x_grad")

    def test_static_with_attr(self):
        for dtype in self.dtypes:
            for axis in self.axises:
                out, x1_grad, x2_grad = concat_static(
                    custom_ops.custom_concat_with_attr, dtype, self.np_inputs,
                    axis, True)
                pd_out, pd_x1_grad, pd_x2_grad = concat_static(
                    paddle.concat, dtype, self.np_inputs, axis, True)

                self.check_output(out, pd_out, "out")
                self.check_output(x1_grad, pd_x1_grad, "x1_grad")
                self.check_output(x2_grad, pd_x2_grad, "x2_grad")
169 170 171 172


if __name__ == "__main__":
    unittest.main()