trt_kernels.cc 6.5 KB
Newer Older
W
Wilber 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/kernel/tensorrt/trt_kernels.h"
#include <string>
#include "NvInfer.h"
#include "NvInferRuntime.h"
#include "NvInferRuntimeCommon.h"
#include "glog/logging.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/Value.h"
#include "paddle/infrt/backends/tensorrt/trt_engine.h"
#include "paddle/infrt/backends/tensorrt/trt_options.h"
#include "paddle/infrt/dialect/tensorrt/trt_ops.h"
#include "paddle/infrt/host_context/symbol_table.h"
#include "paddle/phi/core/dense_tensor.h"

namespace infrt {
namespace kernel {
namespace tensorrt {

::infrt::backends::tensorrt::TrtEngine CreateTrtEngine(
    MlirOperationWithInfrtSymbol
        create_engine_op /*, input_tensors, output_tensors, weights*/) {
  // TODO(wilber): The device_id needs to get from mlir.
  int device_id = 0;
  backends::tensorrt::TrtEngine engine(device_id);

  auto* builder = engine.GetTrtBuilder();
  // TODO(wilber): How to process weights?
  backends::tensorrt::TrtUniquePtr<nvinfer1::INetworkDefinition> network;
  // TODO(wilber): static_shape or dynamic_shape network? The code is just
  // static_shape test.
  network.reset(builder->createNetworkV2(0));

  // TODO(wilber): The build option shoule be fiiled from mlir info.
  backends::tensorrt::BuildOptions options;
  options.max_batch = 4;

  // Parse mlir Region which only has one block.
  mlir::Operation& operation = *create_engine_op.operation;
  auto* symbol_table = create_engine_op.symbol_table;
  CHECK_NOTNULL(symbol_table);

  unsigned int num_regions = operation.getNumRegions();
  CHECK_EQ(num_regions, 1U) << "only support one region case.";
  auto& region = operation.getRegion(0);
  auto& block = region.getBlocks().front();

  llvm::DenseMap<mlir::Value, nvinfer1::ITensor*> map_info;
  std::unordered_map<std::string, phi::DenseTensor*> trt_bind_inputs;

  for (auto index_operand : llvm::enumerate(operation.getOperands())) {
    mlir::Value operand = index_operand.value();
    size_t idx = index_operand.index();

    const std::string input_name = "input_" + std::to_string(idx);
    auto* v = symbol_table->GetValue(std::to_string(idx));
    CHECK_NOTNULL(v);
    auto* t = &v->get<phi::DenseTensor>();
    trt_bind_inputs[input_name] = t;
    // TODO(wilber): get input info from mlir.
    // TODO(wilber): input dims, now only support static_shape, and just remove
    // the first dimension.
    // TODO(wilber): now only suppot float input.
    nvinfer1::Dims dims;
    dims.nbDims = t->dims().size() - 1;
    for (int i = 0; i < dims.nbDims; ++i) {
      dims.d[i] = t->dims()[i + 1];
    }
    auto* in =
        network->addInput(input_name.c_str(), nvinfer1::DataType::kFLOAT, dims);
    map_info[operand] = in;
  }

  // TODO(wilber): Find a way to add layer.
  for (auto& inner_op : block.without_terminator()) {
    if (inner_op.getName().getStringRef() == "trt.Activation") {
      trt::ActivationOp act_op = llvm::dyn_cast<trt::ActivationOp>(inner_op);
      auto in_arg = act_op.getOperand();
      if (!map_info.count(in_arg)) {
        CHECK(false) << "map_info not has in_arg.";
      }
      nvinfer1::ActivationType act_type =
          static_cast<nvinfer1::ActivationType>(act_op.activation_type());
      auto* act_layer = network->addActivation(*map_info[in_arg], act_type);
      act_layer->setAlpha(act_op.alpha().convertToFloat());
      act_layer->setBeta(act_op.beta().convertToFloat());
      for (size_t i = 0; i < act_op->getNumResults(); ++i) {
        nvinfer1::ITensor* act_out_tensor = act_layer->getOutput(i);
        mlir::Value act_out = act_op->getResult(i);
        map_info[act_out] = act_out_tensor;
      }
    }

    // if (inner_op.getName().getStringRef() == "trt.Constant") {
    //   trt::ConstantOp op = llvm::dyn_cast<trt::ConstantOp>(inner_op);
    //   mlir::Value op_out = op.getResult();
    //   std::vector<float> weight_data{1};
    //   auto* layer = network->addConstant(nvinfer1::Dims2(1, 1),
    //   nvinfer1::Weights{nvinfer1::DataType::kFLOAT, weight_data.data(), 1});
    //   auto* op_out_tenor = layer->getOutput(0);
    //   map_info[op_out] = op_out_tenor;
    // }
  }
  for (auto& inner_op : block.without_terminator()) {
    for (mlir::Value v : inner_op.getResults()) {
      for (mlir::Operation* user : v.getUsers()) {
        if (user->getName().getStringRef() == "infrt.return") {
          if (!map_info.count(v)) {
            CHECK(false) << "map_info not has value";
          }
          network->markOutput(*map_info[v]);
        }
      }
    }
  }
  // std::unordered_map<std::string, phi::DenseTensor*> trt_bind_outputs;
  mlir::Operation* ret = block.getTerminator();
  for (unsigned int i = 0; i < ret->getNumOperands(); ++i) {
    mlir::Value arg = ret->getOperand(i);
    CHECK(map_info.count(arg));
    map_info[arg]->setName(("output_" + std::to_string(i)).c_str());
  }
  for (int i = 0; i < network->getNbOutputs(); ++i) {
    engine.PrepareOutputHandle(network->getOutput(i)->getName());
  }

  VLOG(3) << "trt engine build start.";
  engine.Build(std::move(network), options);
  VLOG(3) << "trt engine build done.";

  // TODO(wilber): get inference options from mlir.
  backends::tensorrt::InferenceOptions inference_options;
  inference_options.batch = 1;
  // TODO(wilber): bind trt input/output tensors.
  engine.SetUpInference(inference_options, trt_bind_inputs);
  return engine;
}

void PrintTrtLayer(backends::tensorrt::TrtEngine* engine) {
  engine->GetEngineInfo();
}

std::vector<phi::DenseTensor*> TrtEngineCompute(
    backends::tensorrt::TrtEngine* engine, const phi::GPUContext& context) {
  engine->Run(context);
  std::vector<phi::DenseTensor*> res;
  for (size_t i = 0; i < engine->GetOutputNum(); ++i) {
    res.push_back(engine->GetOutput("output_" + std::to_string(i)));
  }
  return res;
}

}  // namespace tensorrt
}  // namespace kernel
}  // namespace infrt