layer.h 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17 18 19 20 21 22 23
// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on

#include <map>     // NOLINT
#include <string>  // NOLINT
#include <vector>  // NOLINT
M
minqiyang 已提交
24

25 26 27 28 29
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"

M
minqiyang 已提交
30 31
#include "paddle/fluid/imperative/type_defs.h"

32 33 34
namespace paddle {
namespace imperative {

X
Xin Pan 已提交
35 36
namespace py = ::pybind11;

X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
63
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
polish  
Xin Pan 已提交
89

90 91
class OpBase;

M
minqiyang 已提交
92 93 94 95 96
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
97 98
class VarBase {
 public:
99
  VarBase() : VarBase(new framework::Variable(), new VarBase(true)) {}
X
polish  
Xin Pan 已提交
100 101

  // Owns `var` and `grad`
102
  VarBase(framework::Variable* var, VarBase* grad)
X
Xin Pan 已提交
103
      : var_desc_(nullptr),
X
polish  
Xin Pan 已提交
104 105
        var_(var),
        grads_(grad),
X
Xin Pan 已提交
106 107 108
        stop_gradient_(false),
        pre_op_(nullptr),
        pre_op_out_idx_(-1) {}
M
minqiyang 已提交
109 110

  explicit VarBase(bool stop_gradient)
X
Xin Pan 已提交
111
      : var_desc_(nullptr),
X
Xin Pan 已提交
112
        var_(new framework::Variable()),
M
minqiyang 已提交
113
        grads_(stop_gradient ? nullptr : new VarBase(true)),
X
Xin Pan 已提交
114 115 116
        stop_gradient_(stop_gradient),
        pre_op_(nullptr),
        pre_op_out_idx_(-1) {}
117

M
minqiyang 已提交
118 119 120 121 122 123 124 125 126
  virtual ~VarBase() {
    if (var_) {
      delete var_;
    }

    if (grads_) {
      delete grads_;
    }
  }
127

X
Xin Pan 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  OpBase* PreOp() const { return pre_op_; }
  int PreOpOutIdx() const { return pre_op_out_idx_; }

  void SetStopGradient(bool stop_gradient) { stop_gradient_ = stop_gradient; }
  bool IsStopGradient() const { return stop_gradient_; }

  void RunBackward();

  void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
                  int pre_op_out_idx, bool stop_gradient) {
    pre_op_ = pre_op;
    pre_op_out_name_ = pre_op_out_name;
    pre_op_out_idx_ = pre_op_out_idx;
    stop_gradient_ = stop_gradient;
  }

  void ClearGradient() {
X
Xin Pan 已提交
145 146 147 148
    delete grads_;
    grads_ = new VarBase(true);
  }

M
minqiyang 已提交
149
  framework::LoDTensor& GradValue();
150

M
minqiyang 已提交
151 152 153 154 155 156 157
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

158
  framework::VarDesc* var_desc_;
M
minqiyang 已提交
159

M
minqiyang 已提交
160 161
  framework::Variable* var_;
  VarBase* grads_;
162

X
Xin Pan 已提交
163
 private:
164
  bool stop_gradient_;
X
Xin Pan 已提交
165 166 167
  OpBase* pre_op_;
  std::string pre_op_out_name_;
  int pre_op_out_idx_;
168 169
};

M
minqiyang 已提交
170 171 172
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
173 174
class OpBase {
 public:
X
Xin Pan 已提交
175 176 177
  OpBase()
      : op_desc_(nullptr),
        forward_id_(-1),
X
polish  
Xin Pan 已提交
178
        grad_op_desc_(nullptr),
X
Xin Pan 已提交
179
        backward_id_(-1) {}
180 181 182 183 184

  virtual ~OpBase() {
    if (grad_op_desc_) delete grad_op_desc_;
  }

X
Xin Pan 已提交
185
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
186

X
polish  
Xin Pan 已提交
187 188
  // One of `op_desc_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
189
  framework::OpDesc* op_desc_;
X
Xin Pan 已提交
190
  int forward_id_;
X
polish  
Xin Pan 已提交
191 192
  // When has backward, one of `grad_op_desc_` or `backward_id_` is set,
  // not both.
193
  framework::OpDesc* grad_op_desc_;
X
Xin Pan 已提交
194
  int backward_id_;
X
Xin Pan 已提交
195

M
minqiyang 已提交
196 197 198
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
199
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
200

M
minqiyang 已提交
201 202
  framework::VariableValueMap grad_input_vars_;
  framework::VariableValueMap grad_output_vars_;
203 204 205 206 207 208 209 210 211 212 213
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
214
};
215

X
Xin Pan 已提交
216 217 218 219
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
polish  
Xin Pan 已提交
220 221
  static const char* kFwdInp;
  static const char* kFwdOut;
X
Xin Pan 已提交
222

X
Xin Pan 已提交
223
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
224

X
polish  
Xin Pan 已提交
225 226
  static int NumFuncs();

X
Xin Pan 已提交
227
  static std::vector<VarBase*> Apply(int func_id,
X
Xin Pan 已提交
228 229
                                     const std::vector<VarBase*>& inputs);

X
polish  
Xin Pan 已提交
230 231
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);
232

X
polish  
Xin Pan 已提交
233 234 235
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
236 237 238 239
};

}  // namespace imperative
}  // namespace paddle