pipeline_parallel.py 12.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import paddle
import paddle.fluid as fluid
from .meta_parallel_base import MetaParallelBase
17
from .pp_utils.utils import is_float_tensor, _initialize_recompute_hcg
18
from .parallel_layers.pp_layers import PipelineLayer
19 20 21

from ..utils.hybrid_parallel_util import broadcast_mp_parameters
from ..utils.hybrid_parallel_util import broadcast_dp_parameters
22
from ..utils.hybrid_parallel_util import broadcast_sharding_parameters
23
from ..utils.log_util import logger
24
from ..meta_optimizers.dygraph_optimizer import HybridParallelOptimizer, HybridParallelGradScaler
S
ShenLiang 已提交
25
from .pp_utils import p2p_communication as p2p
26

27 28
__all__ = []

29 30 31

class PipelineParallel(MetaParallelBase):
    def __init__(self, layers, hcg, strategy):
32 33 34
        if not isinstance(layers, PipelineLayer):
            raise TypeError(
                "The Layer should be a derived class of PipelineLayer.")
35 36 37
        super(PipelineParallel, self).__init__(layers, hcg, strategy)
        self.use_data_parallel = self._hcg.get_data_parallel_world_size() > 1
        self.use_model_parallel = self._hcg.get_model_parallel_world_size() > 1
38 39
        self.use_sharding_parallel = self._hcg.get_sharding_parallel_world_size(
        ) > 1
40 41 42 43 44 45 46 47

        self.total_loss = None

        self.micro_batch_size = self._strategy.pipeline_configs[
            'micro_batch_size']
        self.accumulate_steps = self._strategy.pipeline_configs[
            'accumulate_steps']

48 49
        self._using_cache = self._strategy.pipeline_configs['p2p_cache_shape']

50 51
        self.num_stages = self._hcg.get_pipe_parallel_world_size()
        self.stage_id = self._hcg.get_stage_id()
52
        self.pp_group = self._hcg.get_pipe_parallel_group()
53

54
        p2p.initialize_p2p_groups(hcg, self._using_cache)
55

56 57
        _initialize_recompute_hcg(hcg)

58 59 60
        self.is_first_stage = self.stage_id == 0
        self.is_last_stage = (self.stage_id == (self.num_stages - 1))
        self.global_rank = self._hcg.get_global_rank()
61
        self.micro_batch_id = 0
62

63 64
        self._compute_loss = True

65 66 67 68 69 70 71
        logger.info("Pipeline Info -- num_stages: {}, stage_id: {}".format(
            self.num_stages, self.stage_id))

        if self.use_model_parallel:
            logger.info("start broadcast mp parameters")
            broadcast_mp_parameters(self._layers, self._hcg)

72 73 74 75
        if self.use_sharding_parallel:
            logger.info("start broadcast sharding parameters")
            broadcast_sharding_parameters(self._layers, self._hcg)

76
        if self.use_data_parallel:
77
            logger.info("start broadcast dp parameters")
78
            broadcast_dp_parameters(self._layers, self._hcg)
79

80
    def train_batch(self, data, optimizer, lr_scheduler=None, scaler=None):
81 82
        assert isinstance(optimizer, HybridParallelOptimizer), (
            'optimizer should be HybridParallelOptimizer subclass.')
83

84 85 86
        assert fluid.framework._dygraph_tracer()._has_grad, (
            'Please enable the generation of gradients.')

87 88
        if self.is_first_stage or self.is_last_stage:
            assert data is not None, (
89
                "For the first and the last stage, the data must be set.")
90
        else:
91 92
            data = None

93 94 95
        self.optimizer = optimizer
        self.lr_scheduler = lr_scheduler
        self.scaler = scaler
96
        self.data = data
97
        self._compute_loss = True
98

99 100
        self._layers.train()

101 102 103
        # store total loss of entire batch
        self.total_loss = None

104 105
        # store data id for micro_batch
        self.micro_batch_id = 0
106

107 108 109
        # Next, use the 1f1b scheduling strategy.
        # this strategy is inspired by:
        # https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/schedules.py
110

111 112 113
        startup_steps = (self.num_stages - self.stage_id - 1)
        startup_steps = min(startup_steps, self.accumulate_steps)
        steady_steps = self.accumulate_steps - startup_steps
114

115 116
        input_buffers = []
        output_buffers = []
117

118 119
        for step_id in range(startup_steps):
            input_tensor = p2p.recv_forward()
120

121 122
            output_tensor = self._forward_step(input_tensor)
            p2p.send_forward(output_tensor)
123

124 125
            input_buffers.append(input_tensor)
            output_buffers.append(output_tensor)
126

127 128
        if steady_steps > 0:
            input_tensor = p2p.recv_forward()
129

130 131
        for i in range(steady_steps):
            last_iter = (i == (steady_steps - 1))
132

133
            output_tensor = self._forward_step(input_tensor)
134

135
            output_tensor_grad = p2p.send_forward_recv_backward(output_tensor)
136

137 138
            input_buffers.append(input_tensor)
            output_buffers.append(output_tensor)
139

140 141
            input_tensor, output_tensor = input_buffers.pop(
                0), output_buffers.pop(0)
142

143 144 145 146 147 148
            input_tensor_grad = self._backward_step(input_tensor, output_tensor,
                                                    output_tensor_grad)

            if last_iter:
                input_tensor = None
                p2p.send_backward(input_tensor_grad)
149
            else:
150
                input_tensor = p2p.send_backward_recv_forward(input_tensor_grad)
151

152 153 154
        for i in range(startup_steps):
            input_tensor = input_buffers.pop(0)
            output_tensor = output_buffers.pop(0)
155

156
            output_tensor_grad = p2p.recv_backward()
157

158 159 160
            input_tensor_grad = self._backward_step(input_tensor, output_tensor,
                                                    output_tensor_grad)
            p2p.send_backward(input_tensor_grad)
161

162
        self._layers.allreduce_shared_weight_gradients()
163

164
        self.train_loss = self._broadcast_final_loss()
165 166 167 168 169

        # optimizer
        self._optimizer_step()
        return self.train_loss

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    def eval_batch(self, data, compute_loss=False):
        self._layers.eval()
        self._compute_loss = compute_loss

        # save data for eval
        self.data = data
        # store data id for micro_batch
        self.micro_batch_id = 0

        # store total loss of entire batch
        self.total_loss = None

        startup_steps = (self.num_stages - self.stage_id - 1)
        startup_steps = min(startup_steps, self.accumulate_steps)
        steady_steps = self.accumulate_steps - startup_steps

        input_buffers = []
        output_buffers = []

        for step_id in range(startup_steps):
            input_tensor = p2p.recv_forward()

            output_tensor = self._forward_step(input_tensor)
            p2p.send_forward(output_tensor)

            input_buffers.append(input_tensor)
            output_buffers.append(output_tensor)

        if steady_steps > 0:
            input_tensor = p2p.recv_forward()

        for i in range(steady_steps):
            last_iter = (i == (steady_steps - 1))

            output_tensor = self._forward_step(input_tensor)
            p2p.send_forward(output_tensor)

            input_buffers.append(input_tensor)
            output_buffers.append(output_tensor)

            if not last_iter:
                input_tensor = p2p.recv_forward()

213 214 215 216 217 218
        if self._compute_loss:
            self.train_loss = self._broadcast_final_loss()
        else:
            self.train_loss = output_buffers

        return self.train_loss
219

220 221 222 223 224 225 226
    def _forward_step(self, input_tensor):
        if self.stage_id == 0:
            input_tensor = self._load_micro_batch(self.micro_batch_id)

        output_tensor = self._layers.forward(input_tensor)

        if self.is_last_stage:
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
            # train calculate loss for train
            if self._compute_loss:
                assert self._layers._loss_fn is not None, "loss function should exist to compute loss"
                labels = self._load_micro_batch(self.micro_batch_id)
                output_tensor = self._layers._loss_fn(output_tensor, labels)
                assert isinstance(
                    output_tensor, paddle.Tensor
                ), "Currently, loss_fn should obtain Paddle.Tensor dtype"

                if self.accumulate_steps > 1:
                    output_tensor = output_tensor / self.accumulate_steps

                if self.total_loss is None:
                    self.total_loss = paddle.zeros_like(output_tensor)
                self.total_loss += output_tensor.detach()
242 243 244 245 246 247 248 249 250 251 252

        self.micro_batch_id += 1
        return output_tensor

    def _backward_step(self, input_tensor, output_tensor, output_tensor_grad):
        if self.is_last_stage:
            assert output_tensor_grad is None
            if self.scaler:
                paddle.autograd.backward(self.scaler.scale(output_tensor))
            else:
                paddle.autograd.backward(output_tensor)
253
        else:
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
            if isinstance(output_tensor, tuple):
                outputs = [t for t in output_tensor if not t.stop_gradient]
                assert len(outputs) == len(output_tensor_grad)
                paddle.autograd.backward(
                    tensors=outputs,
                    grad_tensors=[t for t in output_tensor_grad])
            else:
                paddle.autograd.backward(
                    tensors=[output_tensor], grad_tensors=[output_tensor_grad])

        input_tensor_grad = None
        if input_tensor is not None:
            if isinstance(input_tensor, tuple):
                input_tensor_grad = tuple(
                    [t.grad for t in input_tensor if not t.stop_gradient])
            else:
                input_tensor_grad = input_tensor.grad
        return input_tensor_grad
272 273

    def _load_micro_batch(self, cache_id):
274 275 276 277 278 279 280
        inputs = self.data
        begin = cache_id * self.micro_batch_size
        end = begin + self.micro_batch_size

        if self.is_first_stage:
            assert len(inputs) == 2, "length of input should be 2"
            if isinstance(inputs[0], tuple):
281 282 283
                assert len(
                    inputs[0]
                ) > 1, "If you use tuple for input data, it should have at least two inputs."
284 285 286 287 288 289
                batch_size = inputs[0][0].shape[0]
                assert self.micro_batch_size * self.accumulate_steps == batch_size, (
                    "batch_size needs to be divisible by micro_batch_size. Currently, "
                    "batch_size = %d, micro_batch_size = %d, accumulate_steps = %d."
                    %
                    (batch_size, self.micro_batch_size, self.accumulate_steps))
290 291
                data = [input[begin:end, :].detach() for input in inputs[0]]
                return tuple(data)
292 293 294
            else:
                batch_size = inputs[0].shape[0]
                assert self.micro_batch_size * self.accumulate_steps == batch_size
295
                return inputs[0][begin:end, :].detach()
296 297 298 299 300
        elif self.is_last_stage:
            assert len(inputs) == 2, "length of input should be 2"
            if isinstance(inputs[1], tuple):
                batch_size = inputs[1][0].shape[0]
                assert self.micro_batch_size * self.accumulate_steps == batch_size
301 302
                data = [input[begin:end, :].detach() for input in inputs[1]]
                return tuple(data)
303
            else:
304 305
                batch_size = inputs[1].shape[0]
                assert self.micro_batch_size * self.accumulate_steps == batch_size
306
                return inputs[1][begin:end, :].detach()
307 308 309
        else:
            # No data input is required for other stages
            inputs = None
310

311
    def _broadcast_final_loss(self):
312 313 314 315 316 317 318 319
        if self.is_last_stage:
            assert self.total_loss is not None, "train_batch() in last stage should obtain vaild loss"
            loss = self.total_loss.detach()
            paddle.distributed.broadcast(
                loss,
                src=self.global_rank,
                use_calc_stream=True,
                group=self.pp_group)
320
        else:
321 322 323 324 325 326 327
            loss = paddle.zeros(shape=[1], dtype="float32")
            paddle.distributed.broadcast(
                loss,
                src=self._hcg.get_rank_from_stage(self.num_stages - 1),
                use_calc_stream=True,
                group=self.pp_group)
        return loss
328

329
    def _optimizer_step(self):
330
        if self.scaler:
331
            self.scaler.step(self.optimizer)
332
            self.scaler.update()
333 334
        else:
            self.optimizer.step()
335

336 337 338
        self.optimizer.clear_grad()
        if self.lr_scheduler:
            self.lr_scheduler.step()