fused_transformer.py 22.9 KB
Newer Older
L
Li Min 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle.fluid.layer_helper import LayerHelper
16
from paddle.fluid.framework import in_dygraph_mode, default_main_program
17
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
18
from paddle.fluid import core, dygraph_utils
L
Li Min 已提交
19 20 21 22 23
from paddle import _C_ops

__all__ = []


24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
def _verify_dropout_rate(dropout_rate):
    if not isinstance(dropout_rate, (float, int)):
        raise TypeError("dropout_rate argument should be a number")
    if dropout_rate < 0 or dropout_rate > 1:
        raise ValueError("dropout_rate argument should between 0 and 1")


def fused_feedforward(x,
                      linear1_weight,
                      linear2_weight,
                      linear1_bias=None,
                      linear2_bias=None,
                      ln1_scale=None,
                      ln1_bias=None,
                      ln2_scale=None,
                      ln2_bias=None,
                      dropout1_rate=0.5,
                      dropout2_rate=0.5,
                      activation="relu",
                      ln1_epsilon=1e-5,
                      ln2_epsilon=1e-5,
                      pre_layer_norm=False,
46 47
                      training=True,
                      mode='upscale_in_train',
48
                      name=None):
49
    r"""
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    This is a fusion operator to compute feed forward layer in transformer model architecture.
    This operator only supports running on GPU. The function of the operator is consistent with
    the following pseudo code:

    .. code-block:: python

        residual = src;
        if pre_layer_norm:
            src = layer_norm(src)
        src = linear(dropout(activation(dropout(linear(src)))))
        if not pre_layer_norm:
            src = layer_norm(out)

    Args:
        x (Tensor): the input tensor could be 3-D tensor, the input data type could be float16, float32 or float64, the shape is`[batch\_size, sequence\_length, d_model]`.
        linear1_weight (Tensor): The weight of first linear, the data type is same as `x`, the shape is `[d\_model, dim\_feedforward]`.
        linear2_weight (Tensor): The weight of second linear, the data type is same as `x`, the shape is `[dim\_feedforward, d\_model]`.
        linear1_bias (Tensor, optional): The bias of first linear, the data type is same as `x`, the shape is `[dim_feedforward]`. Default None.
        linear2_bias (Tensor, optional): The bias of second linear, the data type is same as `x`, the shape is `[d_model]`. Default None.
        ln1_scale (Tensor, optional): the weight of first layer_norm, the data type is float32 or float64, the shape is same as `x`. Default None.
        ln1_bias (Tensor, optional): The bias of first layer_norm, the data type is float32 or float64, the shape is `[d\_model]`. Default None.
        ln2_scale (Tensor, optional): The weight of second layer_norm, the data type is float32 or float64, the shape is same as `x`. Default None.
        ln2_bias (Tensor, optional): The bias of second layer_norm, the data type is float32 or float64, the shape is `[d\_model]`. Default None.
        dropout1_rate (float, optional): The first dropout probability of setting units to zero. Default 0.5.
        dropout2_rate (float, optional): The second dropout probability of setting units to zero. Default 0.5.
        activation (str, optional): The activation. Default "relu".
        ln1_epsilon (float, optional): Small float of first layer_norm added to denominator to avoid dividing by zero. Default is 1e-5.
        ln2_epsilon (float, optional): Small float of second layer_norm added to denominator to avoid dividing by zero. Default is 1e-5.
        pre_layer_norm (bool, optional): add layer_norm in the pre-processing stage or post-processing state.
L
Li Min 已提交
79 80 81 82 83 84 85 86 87 88 89 90
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default True.
        mode (str, optional): ['upscale_in_train'(default) | 'downscale_in_infer']

                               1. upscale_in_train(default), upscale the output at training time

                                  - train: out = input * mask / ( 1.0 - p )
                                  - inference: out = input

                               2. downscale_in_infer, downscale the output at inference

                                  - train: out = input * mask
                                  - inference: out = input * (1.0 - p)
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output Tensor, the data type and shape is same as `x`.

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle
            import numpy as np
            x_data = np.random.random((1, 8, 8)).astype("float32")
            linear1_weight_data = np.random.random((8, 8)).astype("float32")
            linear2_weight_data = np.random.random((8, 8)).astype("float32")
            x = paddle.to_tensor(x_data)
            linear1_weight = paddle.to_tensor(linear1_weight_data)
            linear2_weight = paddle.to_tensor(linear2_weight_data)
108
            out = paddle.incubate.nn.functional.fused_feedforward(x, linear1_weight, linear2_weight)
109 110 111 112 113 114
            print(out.numpy().shape)
            # (1, 8, 8)
    """
    _verify_dropout_rate(dropout1_rate)
    _verify_dropout_rate(dropout2_rate)

115 116 117 118 119 120
    seed = None
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'")
    mode = 'downgrade_in_infer' if mode == 'downscale_in_infer' else mode  #semantic transfer

121
    if in_dygraph_mode():
122 123
        if default_main_program().random_seed != 0:
            seed = default_main_program().random_seed
124 125 126 127 128
        out, _, _, _, _, _, _, _, _, _, _ = _C_ops.fused_feedforward(
            x, None, None, linear1_weight, linear1_bias, linear2_weight,
            linear2_bias, ln1_scale, ln1_bias, ln2_scale, ln2_bias,
            'pre_layer_norm', pre_layer_norm, 'ln1_epsilon', ln1_epsilon,
            'ln2_epsilon', ln2_epsilon, 'act_method', activation,
129 130 131 132 133 134 135
            'dropout1_rate', dropout1_rate, 'dropout2_rate', dropout2_rate,
            "dropout1_is_test", not training, "dropout2_is_test", not training,
            "dropout1_fix_seed", seed is not None, "dropout2_fix_seed",
            seed is not None, "dropout1_seed", seed
            if seed is not None else 0, "dropout2_seed", seed
            if seed is not None else 0, 'dropout1_implementation', mode,
            'dropout2_implementation', mode)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        return out

    helper = LayerHelper("fused_feedforward")
    dtype = x.dtype
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'fused_feedforward')
    check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                'fused_feedforward')

    out = helper.create_variable_for_type_inference(x.dtype)
    dropout1_mask = helper.create_variable_for_type_inference(
        'uint8', stop_gradient=True)
    dropout2_mask = helper.create_variable_for_type_inference(
        'uint8', stop_gradient=True)
    ln1_mean = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    ln1_variance = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    ln2_mean = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    ln2_variance = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    linear1_out = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    ln1_out = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    dropout1_out = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    dropout2_out = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)

167 168 169
    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    helper.append_op(
        type='fused_feedforward',
        inputs={
            'X': x,
            'Linear1Weight': linear1_weight,
            'Linear1Bias': linear1_bias,
            'Linear2Weight': linear2_weight,
            'Linear2Bias': linear2_bias,
            'Ln1Scale': ln1_scale,
            'Ln1Bias': ln1_bias,
            'Ln2Scale': ln2_scale,
            'Ln2Bias': ln2_bias,
        },
        outputs={
            'Out': out,
            'Dropout1Mask': dropout1_mask,
            'Dropout2Mask': dropout2_mask,
            'Ln1Mean': ln1_mean,
            'Ln1Variance': ln1_variance,
            'Ln2Mean': ln2_mean,
            'Ln2Variance': ln2_variance,
            'Linear1Out': linear1_out,
            'Ln1Out': ln1_out,
            'Dropout1Out': dropout1_out,
            'Dropout2Out': dropout2_out,
        },
        attrs={
            'dropout1_rate': dropout1_rate,
            'dropout2_rate': dropout2_rate,
            'act_method': activation,
            'pre_layer_norm': pre_layer_norm,
            'ln1_epsilon': ln1_epsilon,
            'ln2_epsilon': ln2_epsilon,
203 204 205 206 207 208 209 210
            'dropout1_is_test': not training,
            'dropout2_is_test': not training,
            'dropout1_fix_seed': seed is not None,
            'dropout2_fix_seed': seed is not None,
            'dropout1_seed': seed if seed is not None else 0,
            'dropout2_seed': seed if seed is not None else 0,
            'dropout1_implementation': mode,
            'dropout2_implementation': mode
211 212 213 214
        })
    return out


L
Li Min 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
def fused_multi_head_attention(x,
                               qkv_weight,
                               linear_weight,
                               pre_layer_norm=False,
                               pre_ln_scale=None,
                               pre_ln_bias=None,
                               ln_scale=None,
                               ln_bias=None,
                               pre_ln_epsilon=1e-05,
                               qkv_bias=None,
                               linear_bias=None,
                               attn_mask=None,
                               dropout_rate=0.5,
                               attn_dropout_rate=0.5,
                               ln_epsilon=1e-05,
230 231
                               training=True,
                               mode='upscale_in_train',
L
Li Min 已提交
232
                               name=None):
233
    r"""
L
Li Min 已提交
234 235
    Attention mapps queries and a set of key-value pairs to outputs, and
    Multi-Head Attention performs multiple parallel attention to jointly attending
236
    to information from different representation subspaces. This API only
L
Li Min 已提交
237
    support self_attention. The pseudo code is as follows:
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

    .. code-block:: python

    	if pre_layer_norm:
    	    out = layer_norm(x)
            out = linear(out) + qkv) + bias
    	else:
	    out = linear(x) + bias
    	out = transpose(out, perm=[2, 0, 3, 1, 4])
    	# extract q, k and v from out.
    	q = out[0:1,::]
    	k = out[1:2,::]
    	v = out[2:3,::]
    	out = q * k^t
    	out = attn_mask + out
    	out = softmax(out)
    	out = dropout(out)
    	out = out * v
    	out = transpose(out, perm=[0, 2, 1, 3])
    	out = out_linear(out)
L
Li Min 已提交
258 259 260 261
    	if pre_layer_norm:
    	    out = x + dropout(linear_bias + out)
	else:
    	    out = layer_norm(x + dropout(linear_bias + out))
L
Li Min 已提交
262 263

    Parameters:
264
        x (Tensor): The input tensor of fused_multi_head_attention. The shape is
L
Li Min 已提交
265 266 267
            `[batch\_size, sequence\_len, embed\_dim]`.
        qkv_weight (Tensor): The qkv weight tensor. The shape is `[3, num_head, dim_head, dim_embed]`.
        linear_weight (Tensor): The linear weight tensor. The shape is `[embed_dim, embed_dim]`.
268
        pre_layer_norm (bool, optional): whether it is pre_layer_norm (True) or post_layer_norm architecture
269
	    (False). Default False.
L
Li Min 已提交
270 271 272 273
        pre_ln_scale (Tensor, optional): The weight tensor of pre layernorm. Default None.
        pre_ln_bias (Tensor, optional): The bias tensor of pre layernorm. Default None.
        ln_scale (Tensor, optional): The weight tensor of layernorm. Default None.
        ln_bias (Tensor, optional): The bias tensor of layernorm. Default None.
274
        pre_ln_epsilon (float, optional): Small float value added to denominator of the pre layer_norm
L
Li Min 已提交
275
            to avoid dividing by zero. Default is 1e-5.
276
        qkv_bias (Tensor, optional): The bias of qkv computation. The shape is `[3, num_head, dim_head]`.
L
Li Min 已提交
277 278
            Default None.
        linear_bias (Tensor, optional): The bias of linear. The shape is `[embed_dim]`. Default None.
279 280 281 282 283 284
        attn_mask (Tensor, optional):  A tensor used in multi-head attention to prevents attention to
 	    some unwanted positions, usually the paddings or the subsequent positions. It is a tensor
            with shape broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`. When the
            data type is bool, the unwanted positions have `False` values and the others have `True` values.
            When the data type is int, the unwanted positions have 0 values and the others have 1 values.
            When the data type is float, the unwanted positions have `-INF` values and the others have 0 values.
285
            It can be None when nothing wanted or needed to be prevented attention to. Default None.
L
Li Min 已提交
286
        dropout_rate (float, optional): The dropout probability used on attention
287
            weights to drop some attention targets for the dropout after attention.
288
            0 for no dropout. Default 0.5.
L
Li Min 已提交
289
        attn_dropout_rate (float, optional): The dropout probability used on attention
290
            weights to drop some attention targets for the dropout in attention.
291
            0 for no dropout. Default 0.5.
292
        ln_epsilon (float, optional): Small float value added to denominator of layer_norm
L
Li Min 已提交
293
            to avoid dividing by zero. Default is 1e-5.
L
Li Min 已提交
294 295 296 297 298 299 300 301 302 303 304 305
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default True.
        mode (str, optional): ['upscale_in_train'(default) | 'downscale_in_infer']

                               1. upscale_in_train(default), upscale the output at training time

                                  - train: out = input * mask / ( 1.0 - p )
                                  - inference: out = input

                               2. downscale_in_infer, downscale the output at inference

                                  - train: out = input * mask
                                  - inference: out = input * (1.0 - p)
306
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
307

308 309 310
    Returns:
        Tensor: The output Tensor, the data type and shape is same as `x`.

L
Li Min 已提交
311 312 313
    Examples:

        .. code-block:: python
314 315

            # required: gpu
L
Li Min 已提交
316
            import paddle
317
            import paddle.incubate.nn.functional as F
L
Li Min 已提交
318 319 320

            # input: [batch_size, seq_len, embed_dim]
            x = paddle.rand(shape=(2, 4, 128), dtype="float32")
321
            # qkv_weight: [3, num_head, head_dim, embed_dim]
L
Li Min 已提交
322
            qkv_weight = paddle.rand(shape=(3, 4, 32, 128), dtype="float32")
323
            # qkv_bias: [3, num_head, head_dim]
L
Li Min 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
            qkv_bias = paddle.rand(shape=(3, 4, 32), dtype="float32")
            # linear_weight: [embed_dim, embed_dim]
            linear_weight = paddle.rand(shape=(128, 128), dtype="float32")
            # linear_bias: [embed_dim]
            linear_bias = paddle.rand(shape=[128], dtype="float32")
            # self attention mask: [batch_size, num_heads, seq_len, seq_len]
            attn_mask = paddle.rand(shape=(2, 4, 4, 4), dtype="float32")

            # output: [batch_size, seq_len, embed_dim]
            output = F.fused_multi_head_attention(
                x, qkv_weight, linear_weight, False,
                None, None, None, None, 1e-5, qkv_bias,
                linear_bias, attn_mask)
            # [2, 4, 128]
            print(output.shape)
    """
340 341 342 343 344 345 346

    seed = None
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'")
    mode = 'downgrade_in_infer' if mode == 'downscale_in_infer' else mode  #semantic transfer

L
Li Min 已提交
347
    if in_dygraph_mode():
348 349
        if default_main_program().random_seed != 0:
            seed = default_main_program().random_seed
350 351
        # pre_ln_mean, pre_ln_variance, pre_ln_out, qkv_out, qkv_bias_out, transpose_out, qk_out,
        # qktv_out, softmax_out, attn_dropout_mask_out, attn_dropout_out, attn_mask_out, fmha_out,
L
Li Min 已提交
352
        # linear_out, dropout_mask_out, ln_mean_out, ln_var_out, bias_dropout_residual_out, final_out
353 354 355 356 357 358
        assert len(qkv_weight.shape
                   ) == 4, "The dims of the shape of qkv_weight should be 4."
        assert qkv_weight.shape[
            0] == 3, "The shape of qkv_weight should be [3, num_head, head_dim, embed_dim]."
        assert qkv_weight.shape[3] == x.shape[
            2], "The 3rd dim of qkv_weight and 2nd dim of x should be the same, i.e., embed_dim."
359 360 361
        assert qkv_weight.shape[1] * qkv_weight.shape[2] == qkv_weight.shape[
            3], "embed_dim must be divisible by num_heads."

L
Li Min 已提交
362 363 364 365 366
        _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, final_out = _C_ops.fused_attention(
            x, pre_ln_scale, pre_ln_bias, qkv_weight, qkv_bias, attn_mask,
            linear_weight, linear_bias, ln_scale, ln_bias, 'pre_layer_norm',
            pre_layer_norm, 'epsilon', pre_ln_epsilon, 'dropout_rate',
            dropout_rate, 'attn_dropout_rate', attn_dropout_rate, 'ln_epsilon',
367 368 369 370 371 372
            ln_epsilon, 'attn_dropout_is_test', not training, 'dropout_is_test',
            not training, 'attn_dropout_fix_seed', seed is not None,
            'dropout_fix_seed', seed is not None, 'attn_dropout_seed', seed
            if seed is not None else 0, 'dropout_seed', seed
            if seed is not None else 0, 'attn_dropout_implementation', mode,
            'dropout_implementation', mode)
L
Li Min 已提交
373
        return final_out
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    else:
        helper = LayerHelper('fused_multi_head_attention', **locals())
        dtype = x.dtype
        # check dtypes
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'fused_multihead_attention')
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'fused_multi_head_attention')

        # set inputs
        inputs = dict()
        inputs['X'] = [x]
        if pre_ln_scale:
            inputs['LnScale'] = [pre_ln_scale]
        if pre_ln_bias:
            inputs['LnBias'] = [pre_ln_bias]
        inputs['QKVW'] = [qkv_weight]
391 392
        if qkv_bias is not None:
            inputs['QKVBias'] = [qkv_bias]
393 394
        inputs['SrcMask'] = attn_mask
        inputs['OutLinearW'] = [linear_weight]
395 396
        if linear_bias is not None:
            inputs['OutLinearBias'] = [linear_bias]
397 398 399 400 401
        if ln_scale:
            inputs['Ln2Scale'] = [ln_scale]
        if ln_bias:
            inputs['Ln2Bias'] = [ln_bias]

402 403 404
        if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
            seed = helper.main_program.random_seed

405 406 407 408 409 410
        # set attrs
        attrs = {
            'pre_layer_norm': pre_layer_norm,
            'epsilon': pre_ln_epsilon,
            'ln_epsilon': ln_epsilon,
            'dropout_rate': dropout_rate,
411 412 413 414 415 416 417 418 419
            'attn_dropout_rate': attn_dropout_rate,
            'attn_dropout_is_test': not training,
            'dropout_is_test': not training,
            'attn_dropout_fix_seed': seed is not None,
            'dropout_fix_seed': seed is not None,
            'attn_dropout_seed': seed if seed is not None else 0,
            'dropout_seed': seed if seed is not None else 0,
            'attn_dropout_implementation': mode,
            'dropout_implementation': mode,
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
        }

        # set outputs
        pre_ln_mean_out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=True)
        pre_ln_variance_out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=True)
        pre_ln_out = helper.create_variable_for_type_inference(dtype=dtype)

        qkv_out = helper.create_variable_for_type_inference(dtype=dtype)
        qkv_bias_out = helper.create_variable_for_type_inference(dtype=dtype)

        transpose_out = helper.create_variable_for_type_inference(dtype=dtype)
        qk_out = helper.create_variable_for_type_inference(dtype=dtype)
        qktv_out = helper.create_variable_for_type_inference(dtype=dtype)
        softmax_out = helper.create_variable_for_type_inference(dtype=dtype)
        attn_dropout_mask_out = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
        attn_dropout_out = helper.create_variable_for_type_inference(
            dtype=dtype)
        attn_mask_out = helper.create_variable_for_type_inference(dtype=dtype)
        fmha_out = helper.create_variable_for_type_inference(dtype=dtype)
        out_linear_out = helper.create_variable_for_type_inference(dtype=dtype)
        dropout_mask_out = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
        ln_mean_out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=True)
        ln_variance_out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=True)
        bias_dropout_residual_out = helper.create_variable_for_type_inference(
            dtype=dtype)
        final_out = helper.create_variable_for_type_inference(dtype=dtype)

        helper.append_op(
            type='fused_attention',
            inputs=inputs,
            outputs={
                "LnMean": pre_ln_mean_out,
                "LnVariance": pre_ln_variance_out,
                "LnOut": pre_ln_out,
                "QKVOut": qkv_out,
                "QKVBiasOut": qkv_bias_out,
                "TransposeOut2": transpose_out,
                "QKOut": qk_out,
                "QKTVOut": qktv_out,
                "SoftmaxOut": softmax_out,
                "AttnDropoutMaskOut": attn_dropout_mask_out,
                "AttnDropoutOut": attn_dropout_out,
                "SrcMaskOut": attn_mask_out,
                "FMHAOut": fmha_out,
                "OutLinearOut": out_linear_out,
                "DropoutMaskOut": dropout_mask_out,
                "Ln2Mean": ln_mean_out,
                "Ln2Variance": ln_variance_out,
                "BiasDropoutResidualOut": bias_dropout_residual_out,
                'Y': final_out
            },
            attrs=attrs)
        return final_out