operator.cc 41.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
P
peizhilin 已提交
19 20
#include <sstream>
#include <string>
S
sneaxiy 已提交
21
#include <unordered_set>
P
peizhilin 已提交
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
25
#include "paddle/fluid/framework/lod_tensor.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/op_proto_maker.h"
28
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/shape_inference.h"
30
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
33

D
dzhwinter 已提交
34
DECLARE_bool(benchmark);
35
DECLARE_bool(check_nan_inf);
Q
Qiao Longfei 已提交
36
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
P
pkpk 已提交
37 38 39
DEFINE_bool(fast_check_nan_inf, false,
            "Fast checking NAN/INF after each operation. It will be a little"
            "bit slow, much faster than check_nan_inf");
D
dzhwinter 已提交
40

Q
Qiao Longfei 已提交
41 42 43
namespace paddle {
namespace framework {

44 45 46 47 48 49
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
50

Q
qiaolongfei 已提交
51 52
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
Y
Yu Yang 已提交
53
    return var->Get<framework::LoDTensor>().type();
Q
qiaolongfei 已提交
54
  } else if (var->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
55
    return var->Get<framework::SelectedRows>().value().type();
Q
qiaolongfei 已提交
56 57 58 59 60
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

61 62
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
63
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
64 65
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
66 67
  }

M
minqiyang 已提交
68 69 70 71 72 73 74 75 76
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
77 78 79 80 81
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
82 83 84 85 86 87
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
88 89 90 91 92
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
93

M
minqiyang 已提交
94 95 96
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
97 98
      return "";
    }
Y
Yu Yang 已提交
99
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
100
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
101 102 103 104
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
105
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
106
    }
D
dzhwinter 已提交
107 108 109 110 111
  } else {
    return "";
  }
}

112 113 114 115 116 117
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
118 119
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
120 121 122 123 124
  }

  return -1;
}

125
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
126 127 128 129 130 131 132
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
133 134 135
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
136 137 138 139 140
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
141 142 143 144 145
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
146
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
147 148 149 150 151 152
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
153
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
154 155 156 157 158 159
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

160
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
161 162 163
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
164
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
165
      PADDLE_THROW("Cannot run operator on place %s", place);
166
#else
P
peizhilin 已提交
167 168
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
169
#endif
P
peizhilin 已提交
170
    }
P
peizhilin 已提交
171

P
peizhilin 已提交
172 173 174 175 176
    // The profile has a process-wide mutex, results in serious performance
    // issue
    // in concurrency scenerio. Here use an `if` to fix this issue.
    // Please not remove the `if`, ask @Superjomn if there are any concern.
    if (platform::IsProfileEnabled()) {
177
      platform::RecordEvent record_event(Type());
P
peizhilin 已提交
178 179 180 181 182 183
      RunImpl(scope, place);
    } else {
      RunImpl(scope, place);
    }
    VLOG(3) << place << " " << DebugStringEx(&scope);
  } catch (platform::EnforceNotMet exception) {
184
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
185
    throw std::move(exception);
186 187 188 189 190 191
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
192
  } catch (...) {
193
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
194
    std::rethrow_exception(std::current_exception());
195
  }
196 197
}

198
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
199
  return inputs_.find(name) != inputs_.end();
200 201
}

202
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
203
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
204
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
205 206
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
207
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
208 209
}

Y
Yu Yang 已提交
210 211
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
212
  auto it = inputs_.find(name);
213 214
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
215
  return it->second;
Y
Yan Chunwei 已提交
216 217
}

218
bool OperatorBase::HasOutputs(const std::string& name) const {
219
  if (outputs_.find(name) != outputs_.end()) {
220 221 222 223 224 225
    return true;
  } else {
    return false;
  }
}

226
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
227
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
228
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
229 230
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
231
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
232 233
}

Y
Yu Yang 已提交
234 235
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
236
  auto it = outputs_.find(name);
237 238
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
239
  return it->second;
Y
Yan Chunwei 已提交
240 241
}

242
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
243
  std::stringstream ss;
Y
Yu Yang 已提交
244
  ss << "Op(" << type_ << "), inputs:{";
245 246 247 248 249 250 251

  std::unordered_set<std::string> no_need_buffer_vars;
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
        Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs());
  }

Y
Yu Yang 已提交
252 253
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
254
    bool is_no_need_buffer_var = (no_need_buffer_vars.count(input.first) > 0);
Y
Yu Yang 已提交
255 256
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
257 258
      auto var_name = input.second[i];
      ss << var_name;
259
      if (scope) {
Q
Qiao Longfei 已提交
260 261 262 263 264 265 266
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
267 268 269
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
270
          ss << ":" << dtype;
271 272
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
273
        }
274
      }
Y
Yu Yang 已提交
275 276 277
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
278
    }
Y
Yu Yang 已提交
279
    ss << "]";
Y
Yu Yang 已提交
280 281
    ++it;
    if (it != inputs_.end()) {
282 283
      ss << ", ";
    }
Q
Qiao Longfei 已提交
284
  }
Y
Yu Yang 已提交
285
  ss << "}, outputs:{";
Y
Yu Yang 已提交
286 287
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
288 289
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
290 291
      auto var_name = output.second[i];
      ss << var_name;
292
      if (scope) {
Q
Qiao Longfei 已提交
293 294 295 296 297 298 299
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
300 301
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
302 303
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
304
        }
305
      }
Y
Yu Yang 已提交
306 307 308
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
309
    }
Y
Yu Yang 已提交
310
    ss << "]";
Y
Yu Yang 已提交
311 312
    ++it;
    if (it != outputs_.end()) {
313 314
      ss << ", ";
    }
Q
Qiao Longfei 已提交
315
  }
Y
Yu Yang 已提交
316
  ss << "}.";
Q
Qiao Longfei 已提交
317 318 319
  return ss.str();
}

Y
Yu Yang 已提交
320
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
321 322
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
323
                           const AttributeMap& attrs)
S
sneaxiy 已提交
324 325 326 327 328 329
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
330 331
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
332
}
333

Q
qijun 已提交
334 335
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
336
  for (auto& o : inputs_) {
Q
qijun 已提交
337 338 339 340 341 342
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
343 344 345 346 347 348 349 350 351 352
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
353
  auto& info = Info();
Y
Yu Yang 已提交
354 355

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
356
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
357 358 359 360 361 362 363 364 365
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
366 367
}

368
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
369
  if (info_ == nullptr || info_->proto_ == nullptr) return;
370

S
sneaxiy 已提交
371
  for (auto& in : info_->Proto().inputs()) {
372 373 374 375
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
376 377
  }

S
sneaxiy 已提交
378
  for (auto& out : info_->Proto().outputs()) {
379 380 381 382 383
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
400
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
401
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
402 403
}

C
chengduo 已提交
404
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
405 406 407 408
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
409
  } else {
Y
Yang Yang 已提交
410
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
411
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
412 413 414
  }
}

C
chengduo 已提交
415
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
416
  if (var->IsType<LoDTensor>()) {
417
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
418
  } else if (var->IsType<SelectedRows>()) {
419
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
420
  } else {
Y
Yang Yang 已提交
421
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
422
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
423 424 425
  }
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

X
Xin Pan 已提交
458 459 460 461 462 463 464 465 466 467
const Variable* ExecutionContext::InputVar(const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's input %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
468
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
469 470 471 472 473 474 475 476 477
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

478
template <>
479
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
480
  return Input<LoDTensor>(name);
481 482 483
}

template <>
484
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
485
    const std::string& name) const {
X
Xin Pan 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> const Tensor* {
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
499
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
500 501 502 503 504
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

505
template <>
506
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
507
  return Output<LoDTensor>(name);
508 509 510
}

template <>
511
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
512
    const std::string& name) const {
513 514 515 516 517
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
518
  std::vector<Tensor*> res;
519 520 521 522 523
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
524
                 });
525 526 527
  return res;
}

Y
Yu Yang 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

543 544
class RuntimeInferShapeContext : public InferShapeContext {
 public:
X
Xin Pan 已提交
545 546
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope,
                           const RuntimeContext& ctx)
G
Gabor Buella 已提交
547
      : op_(op), ctx_(ctx) {}
548 549

  bool HasInput(const std::string& name) const override {
550
    // has only one input
X
Xin Pan 已提交
551
    const auto& ins = ctx_.inputs;
552 553
    auto it = ins.find(name);
    if (it == ins.end()) {
554 555
      return false;
    }
556
    const auto& in = it->second;
X
Xin Pan 已提交
557
    if (in.size() == 0) return false;
T
tensor-tang 已提交
558
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
559
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
560
    return in[0] != nullptr;
561 562 563
  }

  bool HasOutput(const std::string& name) const override {
564
    // has only one output
X
Xin Pan 已提交
565
    const auto& outs = ctx_.outputs;
566 567
    auto it = outs.find(name);
    if (it == outs.end()) {
568 569
      return false;
    }
570
    const auto& out = it->second;
X
Xin Pan 已提交
571
    if (out.size() == 0) {
572 573
      return false;
    }
T
tensor-tang 已提交
574 575
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
576
    return out[0] != nullptr;
577 578 579
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
580 581
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
582
    if (it == ins.end() || it->second.empty()) {
583 584
      return false;
    }
X
Xin Pan 已提交
585 586
    for (auto& input : it->second) {
      if (input == nullptr) {
587 588 589 590 591 592 593
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
594 595
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
596
    if (it == outs.end() || it->second.empty()) {
597 598
      return false;
    }
X
Xin Pan 已提交
599 600
    for (auto& output : it->second) {
      if (output == nullptr) {
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

619 620
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
621 622 623 624 625 626 627 628 629
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
630 631

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
632
                   "The type of %s and %s is not the same.", in, out);
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
651 652
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
653 654 655 656 657 658 659 660
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
661
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
662
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
663 664
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
665
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
666 667
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
668

M
mozga-intel 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
688 689
  }

C
chengduo 已提交
690 691 692 693 694
  void DecreaseLoDLevel(const std::string& in, const std::string& out,
                        size_t i = 0, size_t j = 0) const override {
    PADDLE_THROW("DecreaseLoDLevel is only used in compile time.");
  }

695 696
  bool IsRuntime() const override { return true; }

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
729 730 731 732 733 734 735 736 737 738
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

753
 protected:
X
Xin Pan 已提交
754
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
755
    PADDLE_ENFORCE_NOT_NULL(var);
756 757 758 759 760
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
761
      PADDLE_THROW(
X
Xin Pan 已提交
762
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
763
          "type_id is %s.",
S
sneaxiy 已提交
764
          ToTypeName(var->Type()));
F
fengjiayi 已提交
765 766 767
    }
  }

X
Xin Pan 已提交
768 769 770 771 772 773 774 775
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
776
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
777
    PADDLE_THROW("Only compile time support this method");
778 779
  }

X
Xin Pan 已提交
780
  void SetDim(Variable* var, const DDim& dim) {
781 782 783 784 785
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
786
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
787
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
788 789 790 791 792 793 794 795 796 797 798 799
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
800 801 802
    }
  }

F
fengjiayi 已提交
803 804
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
805
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
806 807
  }

X
Xin Pan 已提交
808 809 810 811 812 813 814 815 816 817 818
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
819 820 821
    return ToVarType(var->Type());
  }

822 823 824 825 826 827 828 829 830 831 832 833 834 835
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
836 837
  }

838
  const OperatorBase& op_;
X
Xin Pan 已提交
839
  const RuntimeContext& ctx_;
840 841
};

842 843
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
844 845 846 847
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
848 849
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
850 851 852
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
853
                 "Operator %s output Tensor %s contains Inf", op_type, name);
C
chengduoZH 已提交
854
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
855
                 "Operator %s output Tensor %s contains NAN", op_type, name);
C
chengduoZH 已提交
856 857
}

B
baojun-nervana 已提交
858
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
859 860 861
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope, ctx);
B
baojun-nervana 已提交
862 863 864
  this->InferShape(&infer_shape_ctx);
}

X
polish  
Xin Pan 已提交
865 866 867 868 869 870 871 872 873 874
std::vector<KernelConfig>* OperatorWithKernel::GetKernelConfig(
    const OpKernelType& key) const {
  auto config_iter = kernel_configs_map_.find(key);
  std::vector<KernelConfig>* kernel_configs = nullptr;
  if (config_iter != kernel_configs_map_.end()) {
    kernel_configs = &(config_iter->second);
  }
  return kernel_configs;
}

L
luotao1 已提交
875 876
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
877 878
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
879 880 881
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
882
      HasAttr(kAllKernelsMustComputeRuntimeShape))
883 884
    all_kernels_must_compute_runtime_shape_ = true;
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
885 886 887 888
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
  } else {
    const Scope* cur_scope = &scope;
889 890 891 892 893 894
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
895 896 897 898 899 900 901 902
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
903
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
904
  auto* dev_ctx = pool.Get(place);
905

906
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
907
    ChooseKernel(*runtime_ctx, scope, place);
908 909
  }

L
Liu Yiqun 已提交
910
  std::vector<KernelConfig>* kernel_configs = GetKernelConfig(*kernel_type_);
911

Y
yuyang18 已提交
912 913
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
T
Tao Luo 已提交
914
  auto* transfer_scope =
915
      PrepareData(scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
916

Y
yuyang18 已提交
917 918 919 920
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

921 922
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
923
  }
Q
QI JUN 已提交
924

925
  if (!all_kernels_must_compute_runtime_shape_) {
L
luotao1 已提交
926
    RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, *runtime_ctx);
927 928
    this->InferShape(&infer_shape_ctx);
  }
X
clean  
Xin Pan 已提交
929 930
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
931 932
  (*kernel_func_)(ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx,
                                   kernel_configs));
D
dzhwinter 已提交
933

Y
yuyang18 已提交
934 935 936
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
937 938
  }

D
dzhwinter 已提交
939
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
940
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
941
    dev_ctx->Wait();
D
dzhwinter 已提交
942
  }
C
chengduoZH 已提交
943

P
pkpk 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
  if (FLAGS_fast_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
      // only check inserted vars,
      // please see executor.py for details of fast_check_nan_inf
      if (vname.rfind("debug_var") == 0) {
        VLOG(3) << "debugging nan/inf in var " << vname;

        auto* var = exec_scope.FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
        } else if (var->IsType<framework::SelectedRows>()) {
          CheckTensorNANOrInf(type_, vname,
                              var->Get<framework::SelectedRows>().value());
        }
      }
    }
  }

C
chengduoZH 已提交
963 964
  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
965
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
966 967
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
968
        CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
969
      } else if (var->IsType<framework::SelectedRows>()) {
970 971
        CheckTensorNANOrInf(type_, vname,
                            var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
972 973 974
      }
    }
  }
975 976 977 978 979 980 981

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
982
}
X
Xin Pan 已提交
983

L
Liu Yiqun 已提交
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
  }

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
      ExecutionContext(*this, scope, *dev_ctx, ctx, nullptr));
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

1020 1021 1022 1023 1024
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1025 1026
}

Y
yuyang18 已提交
1027 1028 1029 1030
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1031
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1032 1033 1034
    auto* origin_var = scope.FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(origin_var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1035
    auto* original_tensor =
C
chengduo 已提交
1036
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1037
    auto* var = transfer_scope.FindVar(var_name);
C
chengduo 已提交
1038 1039
    PADDLE_ENFORCE_NOT_NULL(var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1040
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1041 1042 1043 1044
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
1045
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1046
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1047 1048
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1049
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

  std::unordered_set<std::string> no_buffer_ins;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = no_buffer_inferer(Inputs(), Outputs(), Attrs());
    }
  }

Y
yuyang18 已提交
1060
  for (auto& var_name_item : Inputs()) {
S
sneaxiy 已提交
1061 1062 1063 1064 1065
    // NOTE(zjl): STL does not guarantee fast std::unordered_set::count when set
    // is empty. At least STL implemented on my mac does calculate hash code
    // of search key even though the set is empty.
    if (!no_buffer_ins.empty() &&
        no_buffer_ins.count(var_name_item.first) > 0) {
G
gongweibao 已提交
1066
      VLOG(7) << "Skip scanning input " << var_name_item.first
S
sneaxiy 已提交
1067
              << " in Operator " << type_;
S
sneaxiy 已提交
1068 1069 1070
      continue;
    }

X
Xin Pan 已提交
1071 1072 1073 1074
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1075
      auto* var = input_vars[i];
X
Xin Pan 已提交
1076

Y
yuyang18 已提交
1077
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1078
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1079 1080 1081
        continue;
      }

C
chengduo 已提交
1082
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1100 1101
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
1115 1116 1117 1118 1119 1120 1121 1122 1123
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1124 1125
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1126
        enable_cache_transfer_scope_ = true;
1127
      }
1128
      if (!new_scope) {
Y
yuyang18 已提交
1129 1130
        new_scope = &scope.NewScope();
      }
1131 1132 1133 1134
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1135
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1136 1137 1138
      // time, not the gpu tensor.
      // Thus, we set pre_scope_ = nullptr to trigger `new RuntimeContext()` in
      // RunImpl().
1139
      if (enable_cache_runtime_context_) {
1140 1141
        pre_scope_ = nullptr;
      }
Y
yuyang18 已提交
1142 1143

      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1144
      input_vars[i] = trans_var;
1145

Y
yuyang18 已提交
1146
      Tensor out;
Y
yuyang18 已提交
1147
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1148 1149 1150 1151 1152 1153
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1154

1155
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1156
    const ExecutionContext& ctx) const {
1157 1158 1159
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
Y
Yu Yang 已提交
1160
  for (auto& input : this->inputs_) {
X
Xin Pan 已提交
1161 1162 1163
    const std::vector<const Variable*> vars = ctx.MultiInputVar(input.first);
    for (size_t i = 0; i < vars.size(); ++i) {
      const Variable* var = vars[i];
Y
Yu Yang 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
1174
          PADDLE_ENFORCE(t->IsInitialized(), "Input %s(%lu) is not initialized",
X
Xin Pan 已提交
1175
                         input.first, i);
1176
          proto::VarType::Type tmp = t->type();
1177
          PADDLE_ENFORCE(
1178
              tmp == data_type || data_type == dafault_data_type,
1179
              "DataType of Paddle Op %s %s must be the same. Get (%s) != (%s)",
1180 1181
              Type(), input.first, DataTypeToString(data_type),
              DataTypeToString(tmp));
Y
Yu Yang 已提交
1182 1183 1184 1185 1186
          data_type = tmp;
        }
      }
    }
  }
1187 1188 1189
  PADDLE_ENFORCE(data_type != dafault_data_type,
                 "DataType should be indicated by input");
  return data_type;
Y
Yu Yang 已提交
1190
}
1191

1192 1193 1194 1195 1196 1197 1198 1199
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1200 1201
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1202 1203
}

Q
Qiao Longfei 已提交
1204
}  // namespace framework
L
liaogang 已提交
1205
}  // namespace paddle