lod_tensor.cc 11.4 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#include "paddle/framework/lod_tensor.h"
武毅 已提交
16 17
#include "paddle/framework/data_type.h"
#include "paddle/framework/framework.pb.h"
18 19 20 21 22 23 24 25

#include "paddle/memory/memcpy.h"
#include "paddle/memory/memory.h"

#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <iterator>
26 27 28 29 30 31

#include <glog/logging.h>

namespace paddle {
namespace framework {

武毅 已提交
32
std::ostream &operator<<(std::ostream &os, const LoD &lod) {
33
  os << "{";
武毅 已提交
34
  for (auto &v : lod) {
35
    os << "{";
武毅 已提交
36
    for (auto &i : v) {
37 38 39 40 41 42 43 44 45
      os << i << ",";
    }
    os << "}";
  }
  os << "}";

  return os;
}

Y
Yang Yang 已提交
46 47 48
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
  PADDLE_ENFORCE(t.type().hash_code() == typeid(float).hash_code());

49 50 51 52 53 54 55 56 57 58 59
  if (!platform::is_cpu_place(t.place())) {
    LoDTensor tt;
    framework::Copy(t, platform::CPUPlace(), &tt);
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();

    os << tt;
    return os;
  }

Y
Yang Yang 已提交
60 61 62 63 64 65 66 67 68 69 70 71
  os << "dim: " << t.dims() << "\n";
  os << "lod: " << t.lod() << "\n";

  // only print first ten elements
  int64_t size = t.numel() < 10 ? t.numel() : 10;
  for (int64_t i = 0; i < size; ++i) {
    os << t.data<float>()[i] << " ";
  }

  return os;
}

Q
Qiao Longfei 已提交
72 73 74 75 76 77
std::string LoDToString(const LoD &lod) {
  std::ostringstream stream;
  stream << lod;
  return stream.str();
}

武毅 已提交
78
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
Q
qijun 已提交
79
                 size_t elem_end) {
80 81 82 83 84 85 86 87 88
  PADDLE_ENFORCE_LT(level, in.size());
  PADDLE_ENFORCE_LT(elem_end, in[level].size());

  LoD res;
  res.resize(in.size() - level);
  // copy the first level
  res[0].assign(in[level].begin() + elem_begin,
                in[level].begin() + elem_end + 1);
  for (size_t lvl = 1; lvl < res.size(); lvl++) {
武毅 已提交
89 90 91
    const auto &in_level = in[level + lvl];
    const auto &above_level = res[lvl - 1];
    auto &out_level = res[lvl];
92 93
    out_level.assign(in_level.begin() + above_level.front(),
                     in_level.begin() + above_level.back() + 1);
94
  }
95 96 97 98
  for (size_t lvl = 0; lvl < res.size(); lvl++) {
    // to make the first offset equals 0, all the elements minus the first
    // element
    size_t front = res[lvl].front();
武毅 已提交
99
    for (auto &ele : res[lvl]) {
100 101 102 103 104 105
      ele -= front;
    }
  }
  return res;
}

武毅 已提交
106
LoD ToAbsOffset(const LoD &in) {
107 108 109 110
  // the lowest level stores relative offsets
  if (in.empty() || in.size() == 1) return in;
  LoD result = in;
  for (int level = result.size() - 2; level >= 0; level--) {
武毅 已提交
111
    for (auto &ele : result[level]) {
112 113 114 115
      ele = result[level + 1][ele];
    }
  }
  return result;
116 117
}

武毅 已提交
118
bool operator==(const LoD &a, const LoD &b) {
119 120 121 122 123
  if (a.size() != b.size()) {
    return false;
  }

  for (size_t i = 0; i < a.size(); i++) {
武毅 已提交
124 125
    const auto &a_level = a[i];
    const auto &b_level = b[i];
126 127 128 129 130 131 132 133 134 135
    if (a_level.size() != b_level.size()) {
      return false;
    }
    for (size_t j = 0; j < a_level.size(); j++) {
      if (a_level[j] != b_level[j]) {
        return false;
      }
    }
  }
  return true;
136 137
}

Y
Yan Chunwei 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
bool CheckLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;
    // check: the first offset(the begin offset) of each level should be 0.
    if (level.front() != 0) return false;
    // check: all the offsets in a level should be ascending(no same items
    // allows).
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
          if (a < b) return true;
          return false;
        })) {
      LOG(INFO) << "ascending error";
      return false;
    }
  }
  // check: the lowest level's last offset should equals `tensor_height` if
  //        tensor_height>0.
  if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
    return false;

  // check: the higher level's last offset should equals the lower level's
  // size-1.
  // NOTE LoD store the levels from top to bottom, so the higher level goes
  // first.
  for (size_t level = 0; level < in.size() - 1; level++) {
    if (in[level].back() != in[level + 1].size() - 1) return false;
  }
  return true;
}

bool CheckAbsLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: all the offsets in a level should be ascending(no same items
    // allows).
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
          if (a < b) return true;
          return false;
        })) {
      return false;
    }

    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;

    // check: the first offset of each level should be 0, and the last should be
    // the same(the height of underlying tensor).
    if (level.front() != 0) return false;
    if (tensor_height < 0) {
      tensor_height = level.back();
    } else if ((size_t)tensor_height != level.back()) {
      return false;
    }
  }
  return true;
}

197
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
武毅 已提交
198
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
199 200 201 202 203 204
                                        size_t end_idx, size_t start_level) {
  LoD sub_lod;

  for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
    PADDLE_ENFORCE_LE(start_idx, end_idx);
    PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
205 206 207 208
    std::vector<size_t> level_lens;
    for (size_t i = start_idx; i < end_idx; ++i) {
      level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
    }
209
    sub_lod.emplace_back(level_lens);
210 211 212
    start_idx = lod[level_idx][start_idx];
    end_idx = lod[level_idx][end_idx];
  }
213 214

  return LoDAndOffset{sub_lod, {start_idx, end_idx}};
215 216
}

武毅 已提交
217
void AppendLoD(LoD *lod, const LoD &lod_length) {
218 219
  PADDLE_ENFORCE(
      lod->empty() || lod->size() == lod_length.size(),
220
      "The lod_length should has the same size with the appended lod.");
221
  if (lod->empty()) {
Y
Yang Yu 已提交
222 223 224
    for (size_t i = 0; i < lod_length.size(); ++i) {
      lod->emplace_back(1, 0);  // size = 1, value = 0;
    }
225 226
    *lod = LoD(lod_length.size(), std::vector<size_t>({0}));
  }
227
  for (size_t i = 0; i < lod->size(); ++i) {
武毅 已提交
228
    auto &level = (*lod)[i];
229 230 231 232 233 234
    for (size_t len : lod_length[i]) {
      level.push_back(level.back() + len);
    }
  }
}

武毅 已提交
235 236
void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
                       const platform::DeviceContext &dev_ctx) {
237
  {  // the 1st field, uint32_t version for LoDTensor
武毅 已提交
238 239 240
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char *>(&version), sizeof(version));
  }
241 242 243 244 245 246
  {
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
武毅 已提交
247 248 249 250 251 252 253 254 255 256 257
    auto lod = tensor.lod();
    uint64_t size = lod.size();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : lod) {
      size = each.size() * sizeof(framework::LoD::value_type::value_type);
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }
258 259
  // the 3st field, Tensor
  SerializeToStream(os, static_cast<Tensor>(tensor), dev_ctx);
武毅 已提交
260 261
}

Y
Yancey 已提交
262 263
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
                           const platform::DeviceContext &dev_ctx) {
264
  {
Y
Yancey 已提交
265
    // the 1st field, unit32_t version for LoDTensor
266 267 268
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
    PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
武毅 已提交
269
  }
270 271
  {
    // the 2st field, LoD information
武毅 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
    for (uint64_t i = 0; i < lod_level; ++i) {
      uint64_t size;
      is.read(reinterpret_cast<char *>(&size), sizeof(size));
      std::vector<size_t> tmp(size / sizeof(size_t));
      is.read(reinterpret_cast<char *>(tmp.data()),
              static_cast<std::streamsize>(size));
      lod[i] = tmp;
    }
  }
285
  // the 3st filed, Tensor
Y
Yancey 已提交
286
  DeserializeFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
武毅 已提交
287 288
}

Y
Yang Yang 已提交
289 290 291 292
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
    const std::vector<platform::Place> places) const {
  check_memory_size();
  PADDLE_ENFORCE(lod().empty(), "Disable parallel lod for now");
Y
Yu Yang 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305
  size_t result_size = std::min(static_cast<size_t>(dims()[0]), places.size());
  size_t remainder = dims()[0] % places.size();

  std::vector<LoDTensor> results;
  results.reserve(result_size);

  int step_width = static_cast<int>(dims()[0] / result_size);
  for (size_t i = 0; i < result_size; ++i) {
    int begin = static_cast<int>(i * step_width);
    int end = static_cast<int>((i + 1) * step_width);
    if (i + 1 == places.size()) {  // last
      end += remainder;
    }
Y
Yang Yang 已提交
306

307
    LoDTensor dst;
Y
Yang Yang 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    if (lod().empty()) {
      auto src = Slice(begin, end);
      auto &dst_place = places[place_idx];
      framework::Copy(src, dst_place, &dst);
    } else {
      auto lod_and_offset = GetSubLoDAndAbsoluteOffset(lod(), begin, end, 0);

      auto &offset = lod_and_offset.second;
      auto src = Slice(offset.first, offset.second);
      auto &dst_place = places[place_idx];
      framework::Copy(src, dst_place, &dst);

      LoD my_lod;
      for (auto &l : lod_and_offset.first) {
        std::vector<size_t> v{0};
        for (auto &ll : l) {
          v.push_back(ll + v.back());
        }
        my_lod.emplace_back(v);
      }
      dst.set_lod(my_lod);
    }
Y
Yang Yang 已提交
330 331 332
    lods.emplace_back(dst);
  }

Y
Yu Yang 已提交
333
  return results;
Y
Yang Yang 已提交
334 335
}

Y
Yang Yang 已提交
336
void LoDTensor::MergeLoDTensor(
337 338
    const std::vector<const LoDTensor *> &lod_tensors,
    platform::Place dst_place) {
Y
Yang Yang 已提交
339
  PADDLE_ENFORCE(!lod_tensors.empty());
Y
Yang Yang 已提交
340

Y
Yang Yang 已提交
341 342
  framework::DDim new_dim = lod_tensors[0]->dims();
  std::type_index new_type = lod_tensors[0]->type();
Y
Yang Yang 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
  framework::DataLayout new_layout = lod_tensors[0]->layout();
  LoD new_lod = lod_tensors[0]->lod();
  for (size_t i = 1; i < lod_tensors.size(); ++i) {
    auto *t = lod_tensors[i];
    PADDLE_ENFORCE_EQ(new_type.hash_code(), t->type().hash_code());
    PADDLE_ENFORCE_EQ(new_layout, t->layout());

    PADDLE_ENFORCE_EQ(framework::product(new_dim) / new_dim[0],
                      framework::product(t->dims()) / t->dims()[0]);
    new_dim[0] += t->dims()[0];

    auto &lod = t->lod();
    for (size_t j = 0; j < lod.size(); ++j) {
      auto &sub_lod = new_lod[j];
      auto &offset = sub_lod.back();
      for (size_t k = 1; k < lod[j].size(); ++k) {
        sub_lod.push_back(lod[j][k] + offset);
      }
    }
Y
Yang Yang 已提交
362 363
  }
  Resize(new_dim);
364
  set_layout(new_layout);
Y
Yang Yang 已提交
365
  set_lod(new_lod);
366
  mutable_data(dst_place, new_type);
Y
Yang Yang 已提交
367

368
  int begin = 0;
Y
Yang Yang 已提交
369
  for (auto *src : lod_tensors) {
370 371 372 373
    int end = begin + src->dims()[0];
    auto dst = Slice(begin, end);
    framework::Copy(*src, dst_place, &dst);
    begin = end;
Y
Yang Yang 已提交
374 375 376
  }
}

377 378
}  // namespace framework
}  // namespace paddle