fc_mkldnn_op.cc 28.9 KB
Newer Older
M
mozga-intel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/operators/fc_op.h"
M
mozga-intel 已提交
18
#include "paddle/fluid/platform/mkldnn_helper.h"
W
wanghuancoder 已提交
19

20
namespace phi {
21
class DenseTensor;
22
}  // namespace phi
23

W
wanghuancoder 已提交
24
namespace paddle {
25
namespace framework {}  // namespace framework
W
wanghuancoder 已提交
26 27 28 29
namespace platform {
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle
M
mozga-intel 已提交
30 31 32 33

namespace paddle {
namespace operators {

34 35 36 37 38
using dnnl::inner_product_forward;
using dnnl::memory;
using dnnl::primitive;
using dnnl::prop_kind;
using dnnl::stream;
39 40 41
using framework::DataLayout;
using framework::DDim;
using framework::ExecutionContext;
42 43 44
using framework::LoDTensor;
using framework::Tensor;
using platform::GetMKLDNNFormat;
45 46
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
M
mozga-intel 已提交
47

M
Michał Gallus 已提交
48
template <typename T_in, typename T_w, typename T_out>
49
class FCPrimitiveFactory {
M
mozga-intel 已提交
50
 public:
51
  explicit FCPrimitiveFactory(const dnnl::engine& engine) : engine_(engine) {}
52

53 54 55 56
  void ExecuteFcPrimitive(const LoDTensor* input,
                          const Tensor* weights,
                          const Tensor* bias,
                          LoDTensor* output,
57
                          const MKLDNNDeviceContext& dev_ctx,
A
Adam 已提交
58
                          const ExecutionContext& ctx) {
59
    RecomputeOutputDims(ctx, input, weights, output);
M
Michał Gallus 已提交
60 61
    // If primitive has already been created and cached, don't create new one,
    // but update input and output data pointers and return it.
62 63
    if (fc_) {
      UpdateDataPointers(ctx, output, input);
A
Adam 已提交
64 65
      this->Execute();
      return;
66
    }  // Otherwise, create a new one.
M
mozga-intel 已提交
67

68
    auto in_col_dims = ctx.Attr<int>("in_num_col_dims");
T
tianshuo78520a 已提交
69
    PADDLE_ENFORCE_LE(
70 71
        in_col_dims,
        2,
T
tianshuo78520a 已提交
72 73 74 75
        platform::errors::Unimplemented(
            "DNNL FC doesn't support in_num_col_dims parameter to "
            "be higher than "
            "2."));
76 77
    if (in_col_dims == 2) {
      PADDLE_ENFORCE_EQ(
78 79
          input->dims().size(),
          3,
80 81 82 83
          platform::errors::Unimplemented(
              "DNNL FC only supports in_num_col_dims equal to 2 when "
              "3 dim input is provided."));
      PADDLE_ENFORCE_EQ(
84 85
          input->format(),
          MKLDNNMemoryFormat::ncw,
86 87 88 89 90
          platform::errors::Unimplemented(
              "DNNL FC only supports in_num_col_dims equal to 2 when "
              "input format is equal to ncw."));
    }

91 92
    weights_ = CreateWeightsMemory(weights);

93 94 95 96 97
    // Since MKL-DNN has a lot of limitations on what the input/weights/output
    // dimensions should be, to simplify the code, the creation of primitive
    // descriptor has been divided into separate cases, based on the number
    // of input dimensions.
    size_t input_dim_num = input->dims().size();
98
    paddle::optional<dnnl::inner_product_forward::primitive_desc> fc_prim_desc;
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    memory::desc usr_weights_desc = {};
    switch (input_dim_num) {
      case 2:
        fc_prim_desc =
            Create2DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create2DUserWeightsDesc();
        break;
      case 3:
        fc_prim_desc =
            Create3DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create3DUserWeightsDesc(weights);
        break;
      case 4:
        fc_prim_desc =
            Create4DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create4DUserWeightsDesc(input, weights);
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "DNNL FC doesn't support input dims different than 2, 3, 4."));
        break;
120
    }
121 122
    input_ = CreateMemory<T_in>(fc_prim_desc->src_desc(), input);
    // Update weights format inside of its memory
123 124
    weights_ = Reorder(
        usr_weights_desc, usr_weights_desc, weights_->get_data_handle());
125

126 127 128
    // Quantize weights and reorder to format chosen by FC primitive descriptor.
    QuantizeWeights(ctx, fc_prim_desc->weights_desc());

129
    bias_ = CreateMemoryToBeCached<float>(fc_prim_desc->bias_desc(), bias);
130 131
    // If int8 is desired, quantize bias into 32-bit signed int
    QuantizeBias(*fc_prim_desc, ctx);
M
mozga-intel 已提交
132

133 134 135
    // Store weights and bias in the mkldnn cache
    CacheWeightsAndBias(dev_ctx, ctx);

136 137 138 139 140 141
    // Based on format determined by inner_product, create output in desired
    // memory format
    output_ = CreateDstMemory(*fc_prim_desc, ctx, output);

    // Return MKL-DNN primitive ready to be fed into pipeline and executed
    fc_ = inner_product_forward(*fc_prim_desc);
A
Adam 已提交
142 143 144 145
    this->Execute();
  }

  void Execute() {
146
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
147
    if (bias_) {
148 149 150 151 152
      fc_->execute(astream,
                   {{DNNL_ARG_SRC, *input_},
                    {DNNL_ARG_WEIGHTS, *weights_},
                    {DNNL_ARG_BIAS, *bias_},
                    {DNNL_ARG_DST, *output_}});
A
Adam 已提交
153
    } else {
154 155 156 157
      fc_->execute(astream,
                   {{DNNL_ARG_SRC, *input_},
                    {DNNL_ARG_WEIGHTS, *weights_},
                    {DNNL_ARG_DST, *output_}});
A
Adam 已提交
158 159
    }
    astream.wait();
M
mozga-intel 已提交
160 161
  }

162
 private:
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  // DNNL always returns 2-dimensional data block as a result of computing
  // inner product. Hence the format 'nc' is always set for its output
  // primitive. Therefore, function SetOutputFormat is needed to choose
  // an appropriate format based on the number of input dimensions and
  // format of an input tensor.
  void SetOutputFormat(MKLDNNMemoryFormat in_format, Tensor* out) {
    int dim_num = out->dims().size();
    // In case of 2 dims, we set the only possible format, nc
    if (dim_num == 2) {
      out->set_format(MKLDNNMemoryFormat::nc);
      // In case of 3 dims, we generate a format that is based on number
      // of output dims and the layout of input format (nchw or nhwc).
    } else if (dim_num == 3) {
      if (in_format == MKLDNNMemoryFormat::nwc ||
          in_format == MKLDNNMemoryFormat::nhwc) {
        out->set_format(
            platform::MKLDNNFormatForSize(dim_num, MKLDNNMemoryFormat::nhwc));
      } else {
        out->set_format(
            platform::MKLDNNFormatForSize(dim_num, MKLDNNMemoryFormat::nchw));
      }
      // In any other case we overwrite the output format with the input one.
    } else {
      out->set_format(in_format);
    }
J
jakpiase 已提交
188
    out->set_mem_desc({phi::vectorize(out->dims()),
189 190
                       platform::MKLDNNGetDataType<T_out>(),
                       out->format()});
191 192
  }

193 194
  void UpdateDataPointers(const ExecutionContext& ctx,
                          Tensor* out,
195
                          const Tensor* in) {
M
Michał Gallus 已提交
196 197 198 199 200
    input_->set_data_handle(to_void_cast(in->data<T_in>()));
    output_->set_data_handle(out->mutable_data<T_out>(ctx.GetPlace()));
    // If the primitive exists, but the output tensor has changed its
    // variable, update its format to what has been determined in first
    // call to CreateFcPrimitive method.
A
Adam 已提交
201
    if (out->format() == MKLDNNMemoryFormat::undef) {
202
      SetOutputFormat(in->format(), out);
203
    }
M
mozga-intel 已提交
204 205
  }

206
  dnnl::inner_product_forward::primitive_desc Create2DFcPrimDescriptor(
207 208 209 210 211
      const LoDTensor* input,
      const Tensor* weights,
      const Tensor* bias,
      LoDTensor* output,
      const ExecutionContext& ctx) {
212 213 214 215 216 217
    auto src_desc = CreateMemDescriptor<T_in>(input, input->format());
    auto weight_dims = Get2DWeightDimsForDNNL(weights);
    auto weights_desc =
        CreateMemDescriptor<T_w>(weight_dims, MKLDNNMemoryFormat::any);
    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);
    auto dst_desc = CreateMemDescriptor<T_out>(output, MKLDNNMemoryFormat::any);
218
    const auto attrs = CreateFCAttrs(ctx);
219 220 221 222
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get2DWeightDimsForDNNL(const Tensor* weights) {
223
    auto dims = phi::vectorize(weights->dims());
224 225 226 227 228 229
    std::swap(dims[0], dims[1]);  // swap input dim with output dim
    return dims;
  }

  memory::desc Create2DUserWeightsDesc() { return weights_->get_desc(); }

230
  dnnl::inner_product_forward::primitive_desc Create3DFcPrimDescriptor(
231 232 233 234 235
      const LoDTensor* input,
      const Tensor* weights,
      const Tensor* bias,
      LoDTensor* output,
      const ExecutionContext& ctx) {
236
    auto input_dims = phi::vectorize(input->dims());
237 238
    std::vector<int64_t> new_input_dims = {
        input_dims[0] * input_dims[1], input_dims[2], 1};
239 240 241 242 243 244 245 246 247 248 249
    auto src_desc = CreateMemDescriptor<T_in>(new_input_dims, input->format());

    auto weight_dims = Get3DWeightDimsForDNNL(weights);
    auto weights_desc =
        CreateMemDescriptor<T_w>(weight_dims, MKLDNNMemoryFormat::any);

    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);

    auto dst_dims = {input_dims[0] * input_dims[1], weight_dims[0]};
    auto dst_desc =
        CreateMemDescriptor<T_out>(dst_dims, MKLDNNMemoryFormat::any);
250
    const auto attrs = CreateFCAttrs(ctx);
251 252 253 254
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get3DWeightDimsForDNNL(const Tensor* weights) {
255
    auto paddle_w_dims = phi::vectorize(weights->dims());
256
    return {paddle_w_dims[1], paddle_w_dims[0], 1};
257 258 259 260 261 262 263
  }

  memory::desc Create3DUserWeightsDesc(const Tensor* weights) {
    auto dims = Get3DWeightDimsForDNNL(weights);
    return CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oiw);
  }

264
  dnnl::inner_product_forward::primitive_desc Create4DFcPrimDescriptor(
265 266 267 268 269
      const LoDTensor* input,
      const Tensor* weights,
      const Tensor* bias,
      LoDTensor* output,
      const ExecutionContext& ctx) {
270 271 272 273 274 275 276 277
    auto src_desc = CreateMemDescriptor<T_in>(input, input->format());
    // Since MKL-DNN doesn't support 4D column-major data formats in
    // inner_product primitive, transpose the weights to be in
    // row-major format
    auto dims = Get4DWeightDimsForDNNL(input, weights);
    auto weights_desc = CreateMemDescriptor<T_w>(dims, MKLDNNMemoryFormat::any);
    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);
    auto dst_desc = CreateMemDescriptor<T_out>(output, MKLDNNMemoryFormat::any);
278
    const auto attrs = CreateFCAttrs(ctx);
279 280 281 282 283
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get4DWeightDimsForDNNL(const LoDTensor* input,
                                              const Tensor* weights) {
284 285
    auto old_w_dims = phi::vectorize(weights->dims());
    auto old_in_dims = phi::vectorize(input->dims());
286 287 288 289 290 291 292 293
    auto dims = {old_w_dims[1], old_in_dims[1], old_in_dims[2], old_in_dims[3]};
    return dims;
  }

  memory::desc Create4DUserWeightsDesc(const LoDTensor* input,
                                       const Tensor* weights) {
    auto dims = Get4DWeightDimsForDNNL(input, weights);
    return CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oihw);
M
mozga-intel 已提交
294 295
  }

M
Michał Gallus 已提交
296
  // Convert data from one data format to another
297 298 299
  std::shared_ptr<dnnl::memory> Reorder(const memory::desc& src_desc,
                                        const memory::desc& dst_desc,
                                        void* src_data) {
A
Adam 已提交
300
    auto src_mem = memory(src_desc, engine_, src_data);
301
    auto dst_mem = std::make_shared<memory>(dst_desc, engine_);
M
mozga-intel 已提交
302

303
    auto reorder = dnnl::reorder(src_mem, *dst_mem);
304
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
305 306

    {
C
chenjian 已提交
307
      platform::RecordEvent record_reorder(
308 309 310
          "int_reorder",
          platform::TracerEventType::UserDefined,
          2,
C
chenjian 已提交
311
          platform::EventRole::kUniqueOp);
312 313 314
      reorder.execute(astream, src_mem, *dst_mem);
      astream.wait();
    }
M
mozga-intel 已提交
315

316
    return dst_mem;
M
mozga-intel 已提交
317 318
  }

M
Michał Gallus 已提交
319 320
  // Convert data from one data format to another and rescale it.
  // If the desired data type is (un)signed int8, quantization occurs here.
321
  std::shared_ptr<dnnl::memory> ReorderWithScale(
322 323
      const std::shared_ptr<memory> src_mem,
      const memory::desc& dst_md,
324
      const std::vector<float>& scale_data) {
325 326
    auto dst_mem = std::make_shared<dnnl::memory>(dst_md, engine_);
    dnnl::primitive_attr attributes;
M
Michał Gallus 已提交
327 328 329 330 331 332 333 334
    // According to MKL-DNN's documentation mask determines along which
    // dimensions should the scale be applied.
    // 0 - Single scale applied to whole tensor
    // 1 - Apply Scale along a slice of each dimension which index is 1.
    //     In case of weights quantization, that dimension is output,
    //     becuase we perform per-output-channel quantization
    int mask = CreateMask(0, scale_data.size() > 1);
    attributes.set_output_scales(mask, scale_data);
335
    auto reorder = dnnl::reorder(*src_mem, *dst_mem, attributes);
M
Michał Gallus 已提交
336

337
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
338
    {
C
chenjian 已提交
339
      platform::RecordEvent record_reorder(
340 341 342
          "int_reorder",
          platform::TracerEventType::UserDefined,
          2,
C
chenjian 已提交
343
          platform::EventRole::kUniqueOp);
344
      reorder.execute(astream,
345
                      {{DNNL_ARG_FROM, *src_mem}, {DNNL_ARG_TO, *dst_mem}});
346 347
      astream.wait();
    }
M
Michał Gallus 已提交
348 349 350 351 352

    return dst_mem;
  }

  template <typename T>
353
  static dnnl::memory::desc CreateMemDescriptor(
A
Adam 已提交
354
      const std::vector<int64_t>& dims, MKLDNNMemoryFormat format) {
355 356
    return platform::MKLDNNMemDesc(
        dims, platform::MKLDNNGetDataType<T>(), format);
M
mozga-intel 已提交
357 358
  }

M
Michał Gallus 已提交
359
  template <typename T>
360 361
  static dnnl::memory::desc CreateMemDescriptor(const Tensor* tensor,
                                                MKLDNNMemoryFormat format) {
362
    auto dims = phi::vectorize(tensor->dims());
M
Michał Gallus 已提交
363
    return CreateMemDescriptor<T>(dims, format);
M
mozga-intel 已提交
364 365
  }

M
Michał Gallus 已提交
366
  template <typename T>
367 368
  dnnl::memory CreateMemory(const dnnl::memory::desc& desc,
                            const Tensor* tensor) {
A
Adam 已提交
369
    return CreateMemory(desc, platform::to_void_cast<T>(tensor->data<T>()));
M
mozga-intel 已提交
370 371
  }

372
  dnnl::memory CreateMemory(const dnnl::memory::desc& desc, void* data) {
A
Adam 已提交
373
    return memory(desc, engine_, data);
M
mozga-intel 已提交
374 375
  }

376
  template <typename T>
377 378
  std::shared_ptr<dnnl::memory> CreateMemoryToBeCached(
      const dnnl::memory::desc& desc, const Tensor* tensor) {
379 380 381 382
    return CreateMemoryToBeCached(desc,
                                  platform::to_void_cast<T>(tensor->data<T>()));
  }

383 384
  std::shared_ptr<dnnl::memory> CreateMemoryToBeCached(
      const dnnl::memory::desc& desc, void* data) {
385 386 387 388
    return std::make_shared<memory>(desc, engine_, data);
  }

  // Create weights memory and transform to default MKL-DNN format
389
  std::shared_ptr<dnnl::memory> CreateWeightsMemory(const Tensor* weights) {
390
    auto dims = phi::vectorize(weights->dims());
391
    std::swap(dims[0], dims[1]);  // Correct output dimensions
M
Michał Gallus 已提交
392 393
    auto src_desc = CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::io);
    auto dst_desc = CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oi);
394
    // Transpose weights through MKL-DNN's reorder from io to oi format.
395 396
    return Reorder(src_desc,
                   dst_desc,
A
Adam 已提交
397
                   platform::to_void_cast<float>(weights->data<float>()));
M
Michał Gallus 已提交
398 399
  }

400 401
  void CacheWeightsAndBias(const MKLDNNDeviceContext& dev_ctx,
                           const ExecutionContext& ctx) {
402 403 404
    std::string key = platform::CreateKey(dev_ctx);
    key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);

405 406 407 408 409 410
    const std::string weights_key = key + ctx.InputName("W");
    const std::string bias_key = key + ctx.InputName("Bias");
    dev_ctx.SetBlob(weights_key, weights_);
    dev_ctx.SetBlob(bias_key, bias_);
  }

M
Michał Gallus 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
  // Compute the bias scales so that its values correspond to the
  // scale of data being an output of weights and input multiplication
  std::vector<float> ComputeBiasScales(const ExecutionContext& ctx) {
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> bias_scales(weight_scales_num);

#pragma omp parallel for
    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
        bias_scales[i] = 1.0f;
      else
        bias_scales[i] = scale_in_data * scale_weights_data[i];
    }

    return bias_scales;
  }

  // Correct output scale, to take into account scaling of input and weights
  // Since the data that comes out of input and weight multiplication is
  // scaled with its own scales, this data needs to be divided by
  // those scales to normalise them back to what their floating-point range
  // was. Then we multiply them by desired output scale we want on the output.
435 436
  std::tuple<std::vector<float>, float> ComputeOutputShiftScale(
      const ExecutionContext& ctx) {
M
Michał Gallus 已提交
437 438
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
439 440
    bool has_activation = !ctx.Attr<std::string>("activation_type").empty();
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
441

M
Michał Gallus 已提交
442
    // If the output will be in floats, we don't multiply by scale_out.
443

444 445 446 447 448 449
    float scale = (!force_fp32_output && has_activation)
                      ? ctx.Attr<float>("Scale_out")
                      : 1.0f;
    float inner_scale = (force_fp32_output || has_activation)
                            ? 1.0f
                            : ctx.Attr<float>("Scale_out");
M
Michał Gallus 已提交
450 451 452 453 454 455
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> output_shift_scale(weight_scales_num);

#pragma omp parallel for
    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
456
        output_shift_scale[i] = inner_scale;
M
Michał Gallus 已提交
457 458
      else
        output_shift_scale[i] =
459
            inner_scale / (scale_in_data * scale_weights_data[i]);
M
Michał Gallus 已提交
460 461
    }

462
    return make_tuple(output_shift_scale, scale);
M
Michał Gallus 已提交
463 464 465 466 467 468 469 470 471 472
  }

  // Computing MKL-DNN's scaling mask which determines along which dimension
  // slice should the scaling be applied. For more data plase refer to:
  // https://intel.github.io/mkl-dnn/group__c__api__attributes.html
  // Section dnnl_status_t DNNL_API dnnl_primitive_attr_set_output_scales
  int CreateMask(int slice_dimension, bool is_multi_channel_quantizied) {
    return is_multi_channel_quantizied ? 1 << slice_dimension : 0;
  }

473
  void QuantizeWeights(const ExecutionContext& ctx, memory::desc dst) {
474 475
    weights_ = ReorderWithScale(
        weights_, dst, ctx.Attr<std::vector<float>>("Scale_weights"));
M
Michał Gallus 已提交
476 477 478 479 480
  }

  void QuantizeBias(const inner_product_forward::primitive_desc& fc_prim_desc,
                    const ExecutionContext& ctx) {
    auto bias_scales = ComputeBiasScales(ctx);
481
    bias_ = ReorderWithScale(bias_, fc_prim_desc.bias_desc(), bias_scales);
M
Michał Gallus 已提交
482 483
  }

484
  dnnl::primitive_attr CreateFCAttrs(const ExecutionContext& ctx) {
485 486
    dnnl::primitive_attr attributes;
    dnnl::post_ops post_operations;
M
Michał Gallus 已提交
487

488 489 490
    std::vector<float> output_shift_scale;
    float scale;
    std::tie(output_shift_scale, scale) = ComputeOutputShiftScale(ctx);
M
Michał Gallus 已提交
491 492
    int mask = CreateMask(1, output_shift_scale.size() > 1);
    attributes.set_output_scales(mask, output_shift_scale);
493

494
    float sum_scale = 1.0f;
495 496 497 498
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
      post_operations.append_sum(sum_scale);
    }
M
Michał Gallus 已提交
499 500 501 502

    if (ctx.Attr<std::string>("activation_type") == "relu") {
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 1.0f;  // beta
503 504
      post_operations.append_eltwise(
          scale, dnnl::algorithm::eltwise_relu, negative_slope, placeholder);
505 506 507
    } else if (ctx.Attr<std::string>("activation_type") == "gelu") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
508 509
      post_operations.append_eltwise(
          scale, dnnl::algorithm::eltwise_gelu, alpha, beta);
510 511 512
    } else if (ctx.Attr<std::string>("activation_type") == "gelu_tanh") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
513 514
      post_operations.append_eltwise(
          scale, dnnl::algorithm::eltwise_gelu_tanh, alpha, beta);
515 516 517
    } else if (ctx.Attr<std::string>("activation_type") == "gelu_erf") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
518 519
      post_operations.append_eltwise(
          scale, dnnl::algorithm::eltwise_gelu_erf, alpha, beta);
520 521 522
    } else if (ctx.Attr<std::string>("activation_type") == "tanh") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
523 524
      post_operations.append_eltwise(
          scale, dnnl::algorithm::eltwise_tanh, alpha, beta);
525 526 527
    } else if (ctx.Attr<std::string>("activation_type") == "sigmoid") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
528 529
      post_operations.append_eltwise(
          scale, dnnl::algorithm::eltwise_logistic, alpha, beta);
530 531 532
    } else if (ctx.Attr<std::string>("activation_type") == "mish") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
533 534
      post_operations.append_eltwise(
          scale, dnnl::algorithm::eltwise_mish, alpha, beta);
J
jakpiase 已提交
535 536 537
    } else if (ctx.Attr<std::string>("activation_type") == "hard_swish") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
538 539
      post_operations.append_eltwise(
          scale, dnnl::algorithm::eltwise_hardswish, alpha, beta);
M
Michał Gallus 已提交
540 541 542 543
    }

    attributes.set_post_ops(post_operations);
    return attributes;
544
  }
M
mozga-intel 已提交
545

546 547 548
  dnnl::inner_product_forward::primitive_desc CreateFcPrimDesc(
      const dnnl::memory::desc& input_desc,
      const dnnl::memory::desc& weights_desc,
549 550
      const dnnl::memory::desc& bias_desc,
      const dnnl::memory::desc& dst_desc,
551
      const dnnl::primitive_attr& attrs) {
552 553 554 555 556
    auto fc_desc = inner_product_forward::desc(prop_kind::forward_scoring,
                                               input_desc,
                                               weights_desc,
                                               bias_desc,
                                               dst_desc);
M
mozga-intel 已提交
557

M
Michał Gallus 已提交
558
    return inner_product_forward::primitive_desc(fc_desc, attrs, engine_);
559
  }
M
mozga-intel 已提交
560

M
Michał Gallus 已提交
561 562
  // Create output memory based on output tensor and inner_product
  // primitive descriptor format chosen for output
563 564
  dnnl::memory CreateDstMemory(
      const dnnl::inner_product_forward::primitive_desc& fc_prim_desc,
565 566
      const ExecutionContext& ctx,
      Tensor* output) {
567 568 569 570 571
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
      auto* residual_param = ctx.Output<Tensor>("ResidualData");

      PADDLE_ENFORCE_EQ(
572 573
          output->dims(),
          residual_param->dims(),
574 575 576 577
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
578 579
              output->dims().size(),
              residual_param->dims().size()));
580 581 582 583

      output->ShareDataWith(*residual_param);
    }

A
Adam 已提交
584 585
    auto dst_desc = fc_prim_desc.dst_desc();
    auto buffer_size = dst_desc.get_size();
M
Michał Gallus 已提交
586 587
    T_out* output_data =
        output->mutable_data<T_out>(ctx.GetPlace(), buffer_size);
A
Adam 已提交
588
    memory dst_mem(dst_desc, engine_, to_void_cast<T_out>(output_data));
589
    SetOutputFormat(ctx.Input<LoDTensor>("Input")->format(), output);
590

A
Adam 已提交
591
    return dst_mem;
592
  }
M
mozga-intel 已提交
593

594 595 596 597
  void RecomputeOutputDims(const ExecutionContext& ctx,
                           const LoDTensor* input,
                           const Tensor* w,
                           LoDTensor* output) {
L
luotao1 已提交
598
    int in_num_col_dims = ctx.Attr<int>("in_num_col_dims");
599
    bool padding_weights = ctx.Attr<bool>("padding_weights");
600 601
    PADDLE_ENFORCE_EQ(padding_weights,
                      false,
602 603
                      platform::errors::PermissionDenied(
                          "Weight padding in fc can not be used in MKLDNN."));
L
luotao1 已提交
604
    std::vector<int64_t> output_dims;
605 606 607 608
    FCOutputSize(input->dims(),
                 w->dims(),
                 output_dims,
                 in_num_col_dims,
609
                 padding_weights);
610
    output->Resize(phi::make_ddim(output_dims));
L
luotao1 已提交
611
    output->set_lod(input->lod());
612
  }
L
luotao1 已提交
613

614
 private:
615
  const dnnl::engine& engine_;
616 617
  paddle::optional<memory> input_;
  paddle::optional<memory> output_;
618 619
  std::shared_ptr<memory> bias_;
  std::shared_ptr<memory> weights_;
620
  paddle::optional<inner_product_forward> fc_;
621
};
M
mozga-intel 已提交
622

M
Michał Gallus 已提交
623 624 625 626 627 628
// Attempt to fetch cached primitive factory based on provided parameters
// of input format, weight dimensions and output name.
// If not cached, create a new one.
template <typename T_in, typename T_w, typename T_out>
static std::shared_ptr<FCPrimitiveFactory<T_in, T_w, T_out>>
GetPrimitiveFactory(const MKLDNNDeviceContext& dev_ctx,
629
                    const std::string& key) {
630
  auto prim_creator =
M
Michał Gallus 已提交
631 632
      std::static_pointer_cast<FCPrimitiveFactory<T_in, T_w, T_out>>(
          dev_ctx.GetBlob(key));
633
  if (prim_creator == nullptr) {
634 635
    prim_creator = std::make_shared<FCPrimitiveFactory<T_in, T_w, T_out>>(
        dev_ctx.GetEngine());
636
    dev_ctx.SetBlob(key, prim_creator);
M
mozga-intel 已提交
637 638
  }

639 640
  return prim_creator;
}
M
mozga-intel 已提交
641

M
Michał Gallus 已提交
642 643 644
// Choose appropriate primitive factory implementation based on inferred
// output type (uint8, int8 or float).
template <typename T_in, typename T_w>
645 646 647 648 649 650 651
static void ExecuteFc(const ExecutionContext& ctx,
                      const LoDTensor* input,
                      const Tensor* w,
                      const Tensor* bias,
                      LoDTensor* output,
                      bool fuse_relu,
                      bool force_fp32_output) {
652
  auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
653 654 655 656 657
  std::string prim_key = platform::CreateKey(dev_ctx,
                                             input->format(),
                                             input->dims()[0],
                                             phi::vectorize<int>(w->dims()),
                                             ctx.OutputName("Out"));
658 659
  prim_key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, prim_key);

M
Michał Gallus 已提交
660 661
  constexpr bool is_int8 =
      std::is_same<T_in, int8_t>::value || std::is_same<T_in, uint8_t>::value;
662 663
  bool is_bfloat16 = std::is_same<T_in, paddle::platform::bfloat16>::value;
  if ((!is_int8 && !is_bfloat16) || force_fp32_output) {
664 665
    GetPrimitiveFactory<T_in, T_w, float>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
666 667 668
  } else if (is_bfloat16) {
    GetPrimitiveFactory<T_in, T_w, platform::bfloat16>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
669
  } else if (fuse_relu) {
670 671
    GetPrimitiveFactory<T_in, T_w, uint8_t>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
672
  } else {
673 674
    GetPrimitiveFactory<T_in, T_w, int8_t>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
675 676 677 678 679
  }
}

template <typename T_in, typename T_w>
class FCMKLDNNOpKernel : public framework::OpKernel<T_in> {
M
mozga-intel 已提交
680 681
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
M
Michał Gallus 已提交
682
    PADDLE_ENFORCE_EQ(
683 684
        platform::is_cpu_place(ctx.GetPlace()),
        true,
M
Michał Gallus 已提交
685
        platform::errors::PreconditionNotMet("FC MKL-DNN must use CPUPlace."));
686
    platform::MKLDNNDeviceContext::tls().log_lib_version();
687 688
    auto input = ctx.Input<LoDTensor>("Input");
    auto w = ctx.Input<Tensor>("W");
T
tensor-tang 已提交
689
    auto bias = ctx.Input<Tensor>("Bias");
690
    auto output = ctx.Output<LoDTensor>("Out");
M
mozga-intel 已提交
691

M
Michał Gallus 已提交
692 693 694
    bool fuse_relu = ctx.Attr<std::string>("activation_type") == "relu";
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

695 696
    ExecuteFc<T_in, T_w>(
        ctx, input, w, bias, output, fuse_relu, force_fp32_output);
M
mozga-intel 已提交
697

698
    output->set_layout(DataLayout::kMKLDNN);
M
mozga-intel 已提交
699 700 701 702 703
  }
};
}  // namespace operators
}  // namespace paddle

M
Michał Gallus 已提交
704 705 706 707
// Weights of FC are by default stored using fp32, template argument of weight
// data type implies their destination data type. (What's eventually going to
// be used during computations of kernel).
namespace ops = paddle::operators;
708 709 710 711 712
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
                                    ops::kFCMKLDNNFP32,
M
Michał Gallus 已提交
713 714
                                    ops::FCMKLDNNOpKernel<float, float>);

715
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
716 717 718 719 720
    fc,
    MKLDNN,
    ::paddle::platform::CPUPlace,
    BF16,
    ops::kFCMKLDNNFP32,
721 722 723
    ops::FCMKLDNNOpKernel<paddle::platform::bfloat16,
                          paddle::platform::bfloat16>);

724 725 726 727 728
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    U8,
                                    ops::kFCMKLDNNINT8,
M
Michał Gallus 已提交
729 730
                                    ops::FCMKLDNNOpKernel<uint8_t, int8_t>);

731 732 733 734 735
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    S8,
                                    ops::kFCMKLDNNINT8,
M
Michał Gallus 已提交
736
                                    ops::FCMKLDNNOpKernel<int8_t, int8_t>);