seqpool.h 6.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#pragma once

#include <string>
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/gen/jitcode.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/platform/enforce.h"
T
tensor-tang 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

namespace paddle {
namespace operators {
namespace jit {
namespace gen {

class SeqPoolJitCode : public JitCode {
 public:
  explicit SeqPoolJitCode(const seq_pool_attr_t& attr,
                          size_t code_size = 256 * 1024,
                          void* code_ptr = nullptr)
      : JitCode(code_size, code_ptr), h_(attr.h), w_(attr.w), type_(attr.type) {
    if (type_ != SeqPoolType::kSum) {
      LOG(FATAL) << "Only support sum pool yet ";
    }
    this->genCode();
  }

  virtual const char* name() const {
    std::string base = "SeqPoolJitCode";
    if (type_ == SeqPoolType::kSum) {
      base += "_Sum";
    } else if (type_ == SeqPoolType::kAvg) {
      base += "_Avg";
    } else if (type_ == SeqPoolType::kSqrt) {
      base += "_Sqrt";
    }
    base += ("_W" + std::to_string(w_));
    return base.c_str();
  }
  void genCode() override;

 protected:
  template <typename JMM>
  void pool_height(int w_offset, int block, int max_num_regs) {
T
tensor-tang 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68
    int offset = w_offset;
    for (int i = 0; i < max_num_regs; ++i) {
      vmovups(JMM(i), ptr[param1 + offset]);
      offset += sizeof(float) * block;
    }
    if (h_ > 1) {
      Label l_next_h;
      mov(reg_h, 1);
      mov(reg_tmp, param1);
      add(reg_tmp, w_ * sizeof(float) + w_offset);
      L(l_next_h);
      {
        mov(reg_ptr_src_i, reg_tmp);
T
tensor-tang 已提交
69
        for (int i = 0; i < max_num_regs; ++i) {
T
tensor-tang 已提交
70 71
          vmovups(JMM(i + max_num_regs), ptr[reg_ptr_src_i]);
          // sum anyway
T
tensor-tang 已提交
72
          vaddps(JMM(i), JMM(i), JMM(i + max_num_regs));
T
tensor-tang 已提交
73
          add(reg_ptr_src_i, sizeof(float) * block);
T
tensor-tang 已提交
74
        }
T
tensor-tang 已提交
75 76 77 78
        inc(reg_h);
        add(reg_tmp, w_ * sizeof(float));
        cmp(reg_h, h_);
        jl(l_next_h, T_NEAR);
T
tensor-tang 已提交
79 80 81 82 83 84
      }
    }
    // save right now
    if (type_ == SeqPoolType::kAvg || type_ == SeqPoolType::kSqrt) {
      vbroadcastss(JMM(max_num_regs), reg32_scalar);
    }
T
tensor-tang 已提交
85
    offset = w_offset;
T
tensor-tang 已提交
86 87 88 89 90 91 92 93 94
    for (int i = 0; i < max_num_regs; ++i) {
      if (type_ == SeqPoolType::kAvg || type_ == SeqPoolType::kSqrt) {
        vmulps(JMM(i), JMM(i), JMM(max_num_regs));
      }
      vmovups(ptr[param2 + offset], JMM(i));
      offset += sizeof(float) * block;
    }
  }

T
tensor-tang 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  void pool_height_of_rest_width(int rest, int w_offset, int max_num_regs) {
    const int rest_used_num_regs = load_rest(rest, w_offset, 0);
    const bool has_block4 = rest / 4 > 0;
    const bool has_block2 = (rest % 4) / 2 > 0;
    const bool has_block1 = (rest % 2) == 1;
    if (h_ > 1) {
      Label l_next_h;
      mov(reg_h, 1);
      mov(reg_tmp, param1);
      add(reg_tmp, w_ * sizeof(float) + w_offset);
      L(l_next_h);
      {
        // int used_regs =load_rest(rest, h * w_ * sizeof(float) + w_offset,
        // max_num_regs);
        int reg_idx = 0;
        mov(reg_ptr_src_i, reg_tmp);
        if (has_block4) {
          vmovups(xmm_t(reg_idx + max_num_regs), ptr[reg_ptr_src_i]);
          add(reg_ptr_src_i, sizeof(float) * 4);
          reg_idx++;
        }
        if (has_block2) {
          vmovups(xmm_t(reg_idx + max_num_regs), ptr[reg_ptr_src_i]);
          add(reg_ptr_src_i, sizeof(float) * 2);
          reg_idx++;
        }
        if (has_block1) {
          vmovss(xmm_t(reg_idx + max_num_regs), ptr[reg_ptr_src_i]);
          reg_idx++;
        }
        PADDLE_ENFORCE_EQ(reg_idx, rest_used_num_regs,
                          "All heights should use same regs");
        for (int i = 0; i < reg_idx; ++i) {
          vaddps(xmm_t(i), xmm_t(i), xmm_t(i + max_num_regs));
        }
        inc(reg_h);
        add(reg_tmp, w_ * sizeof(float));
        cmp(reg_h, h_);
        jl(l_next_h, T_NEAR);
      }
    }
    // save right now
    if (type_ == SeqPoolType::kAvg || type_ == SeqPoolType::kSqrt) {
      vbroadcastss(xmm_t(max_num_regs - 1), reg32_scalar);
      for (int i = 0; i < rest_used_num_regs; ++i) {
        vmulps(xmm_t(i), xmm_t(i), xmm_t(max_num_regs - 1));
      }
    }
    save_rest(rest, w_offset);
  }

  // return the number of used regs, use start from reg 0
  int load_rest(int rest, int w_offset, const int num_shift_regs,
                const int reg_start = 0) {
    const bool has_block4 = rest / 4 > 0;
    const bool has_block2 = (rest % 4) / 2 > 0;
    const bool has_block1 = (rest % 2) == 1;
    int reg_idx = reg_start;
    if (has_block4) {
      vmovups(xmm_t(reg_idx + num_shift_regs), ptr[param1 + w_offset]);
      w_offset += sizeof(float) * 4;
      reg_idx++;
    }
    if (has_block2) {
      vmovq(xmm_t(reg_idx + num_shift_regs), ptr[param1 + w_offset]);
      w_offset += sizeof(float) * 2;
      reg_idx++;
    }
    if (has_block1) {
      vmovss(xmm_t(reg_idx + num_shift_regs), ptr[param1 + w_offset]);
      reg_idx++;
    }
    return reg_idx;
  }

  // use reg start from 0
  void save_rest(int rest, int w_offset, int reg_start = 0) {
    const bool has_block4 = rest / 4 > 0;
    const bool has_block2 = (rest % 4) / 2 > 0;
    const bool has_block1 = (rest % 2) == 1;
    int reg_idx = reg_start;
    if (has_block4) {
      vmovups(ptr[param2 + w_offset], xmm_t(reg_idx));
      w_offset += sizeof(float) * 4;
      reg_idx++;
    }
    if (has_block2) {
      vmovq(ptr[param2 + w_offset], xmm_t(reg_idx));
      w_offset += sizeof(float) * 2;
      reg_idx++;
    }
    if (has_block1) {
      vmovss(ptr[param2 + w_offset], xmm_t(reg_idx));
    }
  }

T
tensor-tang 已提交
191 192 193 194 195 196 197 198
 private:
  int h_;
  int w_;
  SeqPoolType type_;
  reg64_t param1{abi_param1};
  reg64_t param2{abi_param2};
  reg64_t param3{abi_param3};
  reg32_t reg32_scalar{r8d};
T
tensor-tang 已提交
199 200 201 202

  reg64_t reg_h{r9};
  reg64_t reg_ptr_src_i{r10};
  reg64_t reg_tmp{r11};
T
tensor-tang 已提交
203 204 205 206 207 208
};

}  // namespace gen
}  // namespace jit
}  // namespace operators
}  // namespace paddle