roi_align_op.h 15.8 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <limits>
F
FDInSky 已提交
15
#include <vector>
J
jerrywgz 已提交
16 17 18 19 20 21 22 23 24
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

J
jerrywgz 已提交
25 26
static constexpr int kROISize = 4;

J
jerrywgz 已提交
27
template <class T>
J
jerrywgz 已提交
28
void PreCalcForBilinearInterpolate(
J
jerrywgz 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    const platform::DeviceContext& ctx, const int height, const int width,
    const int pooled_height, const int pooled_width, const int iy_upper,
    const int ix_upper, T roi_ymin, T roi_xmin, T bin_size_h, T bin_size_w,
    int roi_bin_grid_h, int roi_bin_grid_w, Tensor* pre_pos, Tensor* pre_w) {
  int pre_calc_index = 0;
  int* pre_pos_data = pre_pos->mutable_data<int>(ctx.GetPlace());
  T* pre_w_data = pre_w->mutable_data<T>(ctx.GetPlace());
  for (int ph = 0; ph < pooled_height; ph++) {
    for (int pw = 0; pw < pooled_width; pw++) {
      for (int iy = 0; iy < iy_upper; iy++) {
        // calculate y of sample points
        T y = roi_ymin + ph * bin_size_h +
              static_cast<T>(iy + .5f) * bin_size_h /
                  static_cast<T>(roi_bin_grid_h);
        // calculate x of samle points
        for (int ix = 0; ix < ix_upper; ix++) {
          T x = roi_xmin + pw * bin_size_w +
                static_cast<T>(ix + .5f) * bin_size_w /
                    static_cast<T>(roi_bin_grid_w);
          // deal with elements out of map
          if (y < -1.0 || y > height || x < -1.0 || x > width) {
J
jerrywgz 已提交
50 51 52
            for (int i = 0; i < kROISize; ++i) {
              pre_pos_data[i + pre_calc_index * kROISize] = 0;
              pre_w_data[i + pre_calc_index * kROISize] = 0;
J
jerrywgz 已提交
53 54 55 56
            }
            pre_calc_index += 1;
            continue;
          }
J
jerrywgz 已提交
57 58
          y = y <= 0 ? 0 : y;
          x = x <= 0 ? 0 : x;
J
jerrywgz 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

          int y_low = static_cast<int>(y);
          int x_low = static_cast<int>(x);
          int y_high;
          int x_high;
          if (y_low >= height - 1) {
            y_high = y_low = height - 1;
            y = static_cast<T>(y_low);
          } else {
            y_high = y_low + 1;
          }
          if (x_low >= width - 1) {
            x_high = x_low = width - 1;
            x = static_cast<T>(x_low);
          } else {
            x_high = x_low + 1;
          }
          T ly = y - y_low, lx = x - x_low;
          T hy = 1. - ly, hx = 1. - lx;
J
jerrywgz 已提交
78 79 80 81 82 83 84 85
          pre_pos_data[pre_calc_index * kROISize] = y_low * width + x_low;
          pre_pos_data[pre_calc_index * kROISize + 1] = y_low * width + x_high;
          pre_pos_data[pre_calc_index * kROISize + 2] = y_high * width + x_low;
          pre_pos_data[pre_calc_index * kROISize + 3] = y_high * width + x_high;
          pre_w_data[pre_calc_index * kROISize] = hy * hx;
          pre_w_data[pre_calc_index * kROISize + 1] = hy * lx;
          pre_w_data[pre_calc_index * kROISize + 2] = ly * hx;
          pre_w_data[pre_calc_index * kROISize + 3] = ly * lx;
J
jerrywgz 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
          pre_calc_index += 1;
        }
      }
    }
  }
}

template <class T>
void bilinear_interpolate_gradient(const int height, const int width, T y, T x,
                                   const T out_grad_this_bin, const T count,
                                   T* batch_grad_data) {
  int x_low, y_low, x_high, y_high;
  T w1, w2, w3, w4;
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    w1 = w2 = w3 = w4 = 0;
    x_low = x_high = y_low = y_high = -1;
    return;
  }
J
jerrywgz 已提交
104 105
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
J
jerrywgz 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  y_low = static_cast<int>(y);
  x_low = static_cast<int>(x);
  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = static_cast<T>(y_low);
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = static_cast<T>(x_low);
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low, lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;
  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
  T diff1 = out_grad_this_bin * w1 / count;
  T diff2 = out_grad_this_bin * w2 / count;
  T diff3 = out_grad_this_bin * w3 / count;
  T diff4 = out_grad_this_bin * w4 / count;
  if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
    *(batch_grad_data + y_low * width + x_low) += diff1;
    *(batch_grad_data + y_low * width + x_high) += diff2;
    *(batch_grad_data + y_high * width + x_low) += diff3;
    *(batch_grad_data + y_high * width + x_high) += diff4;
  }
}

template <typename DeviceContext, typename T>
class CPUROIAlignOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<framework::Tensor>("X");
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
    auto* out = ctx.Output<framework::Tensor>("Out");
    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
148
    auto aligned = ctx.Attr<bool>("aligned");
J
jerrywgz 已提交
149 150 151 152

    auto& dev_ctx = ctx.template device_context<DeviceContext>();

    auto in_dims = in->dims();
J
jerrywgz 已提交
153 154 155 156 157
    int batch_size = in_dims[0];
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];
    int rois_num = rois->dims()[0];
J
jerrywgz 已提交
158 159 160 161 162 163 164 165 166 167

    auto in_stride = framework::stride(in_dims);
    auto roi_stride = framework::stride(rois->dims());
    auto out_stride = framework::stride(out->dims());

    const T* input_data = in->data<T>();
    framework::Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
F
FDInSky 已提交
168
    int rois_batch_size;
169 170 171
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num_t = ctx.Input<framework::Tensor>("RoisNum");
      rois_batch_size = rois_num_t->numel();
F
FDInSky 已提交
172
      PADDLE_ENFORCE_EQ(
173
          rois_batch_size, batch_size,
F
FDInSky 已提交
174
          platform::errors::InvalidArgument(
175 176 177
              "The batch size of rois and the batch size of images "
              " must be the same. But received the batch size of rois is %d, "
              "and the batch size of images is %d",
F
FDInSky 已提交
178
              rois_batch_size, batch_size));
179 180 181 182
      auto* rois_num_data = rois_num_t->data<int>();
      int start = 0;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (int i = start; i < start + rois_num_data[n]; ++i) {
F
FDInSky 已提交
183 184
          roi_batch_id_data[i] = n;
        }
185
        start += rois_num_data[n];
F
FDInSky 已提交
186 187 188
      }
    } else {
      auto lod = rois->lod();
189 190 191 192
      PADDLE_ENFORCE_EQ(lod.empty(), false,
                        platform::errors::InvalidArgument(
                            "Input(ROIs) Tensor of ROIAlignOp "
                            "does not contain LoD information."));
F
FDInSky 已提交
193 194 195 196 197 198 199 200 201 202
      auto rois_lod = lod.back();
      int rois_batch_size = rois_lod.size() - 1;
      PADDLE_ENFORCE_EQ(
          rois_batch_size, batch_size,
          platform::errors::InvalidArgument(
              "The rois_batch_size and imgs "
              "batch_size must be the same. But received rois_batch_size = %d, "
              "batch_size = %d",
              rois_batch_size, batch_size));
      int rois_num_with_lod = rois_lod[rois_batch_size];
203 204 205 206 207 208 209 210
      PADDLE_ENFORCE_EQ(
          rois_num, rois_num_with_lod,
          platform::errors::InvalidArgument(
              "The actual number of rois and the number of rois "
              "provided from Input(RoIsLoD) in RoIAlign must be the same."
              " But received actual number of rois is %d, and the number "
              "of rois from RoIsLoD is %d",
              rois_num, rois_num_with_lod));
F
FDInSky 已提交
211 212 213 214
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
J
jerrywgz 已提交
215 216 217 218
      }
    }
    T* output_data = out->mutable_data<T>(ctx.GetPlace());
    const T* rois_data = rois->data<T>();
219
    T roi_offset = aligned ? T(0.5) : 0;
J
jerrywgz 已提交
220 221
    for (int n = 0; n < rois_num; ++n) {
      int roi_batch_id = roi_batch_id_data[n];
222 223 224 225 226 227 228 229 230 231 232
      T roi_xmin = rois_data[0] * spatial_scale - roi_offset;
      T roi_ymin = rois_data[1] * spatial_scale - roi_offset;
      T roi_xmax = rois_data[2] * spatial_scale - roi_offset;
      T roi_ymax = rois_data[3] * spatial_scale - roi_offset;

      T roi_width = roi_xmax - roi_xmin;
      T roi_height = roi_ymax - roi_ymin;
      if (!aligned) {
        roi_width = std::max(roi_width, static_cast<T>(1.));
        roi_height = std::max(roi_height, static_cast<T>(1.));
      }
J
jerrywgz 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

      T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
      T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
      const T* batch_data = input_data + roi_batch_id * in_stride[0];

      int roi_bin_grid_h = (sampling_ratio > 0)
                               ? sampling_ratio
                               : ceil(roi_height / pooled_height);
      int roi_bin_grid_w = (sampling_ratio > 0)
                               ? sampling_ratio
                               : ceil(roi_width / pooled_width);
      const T count = roi_bin_grid_h * roi_bin_grid_w;
      Tensor pre_pos;
      Tensor pre_w;
      int pre_size = count * out_stride[1];
J
jerrywgz 已提交
248 249
      pre_pos.Resize({pre_size, kROISize});
      pre_w.Resize({pre_size, kROISize});
J
jerrywgz 已提交
250

J
jerrywgz 已提交
251
      PreCalcForBilinearInterpolate(
J
jerrywgz 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264
          dev_ctx, height, width, pooled_height, pooled_width, roi_bin_grid_h,
          roi_bin_grid_w, roi_ymin, roi_xmin, bin_size_h, bin_size_w,
          roi_bin_grid_h, roi_bin_grid_w, &pre_pos, &pre_w);
      const int* pre_pos_data = pre_pos.data<int>();
      const T* pre_w_data = pre_w.data<T>();
      for (int c = 0; c < channels; c++) {
        int pre_calc_index = 0;
        for (int ph = 0; ph < pooled_height; ph++) {
          for (int pw = 0; pw < pooled_width; pw++) {
            const int pool_index = ph * pooled_width + pw;
            T output_val = 0;
            for (int iy = 0; iy < roi_bin_grid_h; iy++) {
              for (int ix = 0; ix < roi_bin_grid_w; ix++) {
J
jerrywgz 已提交
265 266 267
                for (int i = 0; i < kROISize; i++) {
                  int pos = pre_pos_data[pre_calc_index * kROISize + i];
                  T w = pre_w_data[pre_calc_index * kROISize + i];
J
jerrywgz 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
                  output_val += w * batch_data[pos];
                }
                pre_calc_index += 1;
              }
            }
            output_val /= count;
            output_data[pool_index] = output_val;
          }
        }
        batch_data += in_stride[1];
        output_data += out_stride[1];
      }
      rois_data += roi_stride[0];
    }
  }
};

template <typename DeviceContext, typename T>
class CPUROIAlignGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<framework::Tensor>("X");
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* in_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
    auto in_dims = in->dims();
300
    auto aligned = ctx.Attr<bool>("aligned");
301

J
jerrywgz 已提交
302 303 304 305
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];
    int rois_num = rois->dims()[0];
306 307 308 309

    if (!in_grad) {
      return;
    }
J
jerrywgz 已提交
310 311 312 313
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
J
jerrywgz 已提交
314

F
FDInSky 已提交
315
    int rois_batch_size;
316 317 318 319 320 321 322
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num_t = ctx.Input<framework::Tensor>("RoisNum");
      rois_batch_size = rois_num_t->numel();
      auto* rois_num_data = rois_num_t->data<int>();
      int start = 0;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (int i = start; i < start + rois_num_data[n]; ++i) {
F
FDInSky 已提交
323 324
          roi_batch_id_data[i] = n;
        }
325
        start += rois_num_data[n];
F
FDInSky 已提交
326 327 328 329 330 331 332 333
      }
    } else {
      auto rois_lod = rois->lod().back();
      rois_batch_size = rois_lod.size() - 1;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
J
jerrywgz 已提交
334
      }
J
jerrywgz 已提交
335
    }
336 337 338 339 340 341 342 343 344 345
    in_grad->mutable_data<T>(ctx.GetPlace());
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(dev_ctx, in_grad, static_cast<T>(0));

    int output_grad_size = out_grad->numel();

    if ((!out_grad->IsInitialized()) || (output_grad_size <= 0)) {
      return;
    }
J
jerrywgz 已提交
346

J
jerrywgz 已提交
347 348 349
    const T* rois_data = rois->data<T>();
    const T* out_grad_data = out_grad->data<T>();
    T* in_grad_data = in_grad->mutable_data<T>(ctx.GetPlace());
J
jerrywgz 已提交
350

J
jerrywgz 已提交
351 352 353
    auto in_stride = framework::stride(in->dims());
    auto roi_stride = framework::stride(rois->dims());
    auto out_stride = framework::stride(out_grad->dims());
J
jerrywgz 已提交
354

355
    T roi_offset = aligned ? T(0.5) : 0;
J
jerrywgz 已提交
356 357
    for (int n = 0; n < rois_num; ++n) {
      int roi_batch_idx = roi_batch_id_data[n];
358 359 360 361 362 363 364 365 366 367 368 369
      T roi_xmin = rois_data[0] * spatial_scale - roi_offset;
      T roi_ymin = rois_data[1] * spatial_scale - roi_offset;
      T roi_xmax = rois_data[2] * spatial_scale - roi_offset;
      T roi_ymax = rois_data[3] * spatial_scale - roi_offset;

      T roi_width = roi_xmax - roi_xmin;
      T roi_height = roi_ymax - roi_ymin;

      if (!aligned) {
        roi_width = std::max(roi_width, static_cast<T>(1.));
        roi_height = std::max(roi_height, static_cast<T>(1.));
      }
J
jerrywgz 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
      T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
      T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
      for (int c = 0; c < channels; ++c) {
        T* batch_grad_data =
            in_grad_data + roi_batch_idx * in_stride[0] + c * in_stride[1];
        const T* batch_out_grad_data =
            out_grad_data + n * out_stride[0] + c * out_stride[1];
        for (int ph = 0; ph < pooled_height; ++ph) {
          for (int pw = 0; pw < pooled_width; ++pw) {
            int pool_index = ph * pooled_width + pw;
            T out_grad_this_bin = batch_out_grad_data[pool_index];
            int roi_bin_grid_h = (sampling_ratio > 0)
                                     ? sampling_ratio
                                     : ceil(roi_height / pooled_height);
            int roi_bin_grid_w = (sampling_ratio > 0)
                                     ? sampling_ratio
                                     : ceil(roi_width / pooled_width);
            T count = roi_bin_grid_h * roi_bin_grid_w;
            for (int iy = 0; iy < roi_bin_grid_h; iy++) {
              const T y = roi_ymin + ph * bin_size_h +
                          static_cast<T>(iy + .5f) * bin_size_h /
                              static_cast<T>(roi_bin_grid_h);
              for (int ix = 0; ix < roi_bin_grid_w; ix++) {
                const T x = roi_xmin + pw * bin_size_w +
                            static_cast<T>(ix + .5f) * bin_size_w /
                                static_cast<T>(roi_bin_grid_w);
                bilinear_interpolate_gradient(height, width, y, x,
                                              out_grad_this_bin, count,
                                              batch_grad_data);
J
jerrywgz 已提交
399 400 401 402 403
              }
            }
          }
        }
      }
J
jerrywgz 已提交
404
      rois_data += roi_stride[0];
J
jerrywgz 已提交
405 406 407 408 409
    }
  }
};
}  // namespace operators
}  // namespace paddle