op_registry.h 4.7 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <tuple>
#include <vector>
Y
Yi Wang 已提交
20 21 22 23 24
#include "paddle/fluid/framework/grad_op_desc_maker.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_type_inference.h"
25 26 27 28 29 30 31 32

namespace paddle {
namespace framework {
namespace details {

enum OpInfoFillType {
  kOperator = 0,
  kOpProtoAndCheckerMaker = 1,
Y
Yu Yang 已提交
33
  kGradOpDescMaker = 2,
34 35
  kVarTypeInference = 3,
  kShapeInference = 4
36 37 38 39 40 41 42 43 44 45 46
};

template <typename T>
struct OpInfoFillTypeID {
  static constexpr OpInfoFillType ID() {
    return std::is_base_of<OperatorBase, T>::value
               ? kOperator
               : (std::is_base_of<OpProtoAndCheckerMaker, T>::value
                      ? kOpProtoAndCheckerMaker
                      : (std::is_base_of<GradOpDescMakerBase, T>::value
                             ? kGradOpDescMaker
Y
Yu Yang 已提交
47 48
                             : (std::is_base_of<VarTypeInference, T>::value
                                    ? kVarTypeInference
49 50 51 52
                                    : (std::is_base_of<InferShapeBase, T>::value
                                           ? kShapeInference
                                           : static_cast<OpInfoFillType>(
                                                 -1)))));
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
  }
};

template <typename T, OpInfoFillType = OpInfoFillTypeID<T>::ID()>
struct OpInfoFiller;

template <size_t I, bool at_end, typename... ARGS>
class OperatorRegistrarRecursive;

template <size_t I, typename... ARGS>
class OperatorRegistrarRecursive<I, false, ARGS...> {
 public:
  using T = typename std::tuple_element<I, std::tuple<ARGS...>>::type;
  OperatorRegistrarRecursive(const char* op_type, OpInfo* info) {
    OpInfoFiller<T> fill;
    fill(op_type, info);
    constexpr auto size = sizeof...(ARGS);
    OperatorRegistrarRecursive<I + 1, I + 1 == size, ARGS...> reg(op_type,
                                                                  info);
    (void)(reg);
  }
};

template <size_t I, typename... ARGS>
class OperatorRegistrarRecursive<I, true, ARGS...> {
 public:
  OperatorRegistrarRecursive(const char* op_type, OpInfo* info) {}
};

template <typename T>
struct OpInfoFiller<T, kOperator> {
  void operator()(const char* op_type, OpInfo* info) const {
    info->creator_ = [](const std::string& type, const VariableNameMap& inputs,
                        const VariableNameMap& outputs,
                        const AttributeMap& attrs) {
      return new T(type, inputs, outputs, attrs);
    };
  }
};

template <typename T>
struct OpInfoFiller<T, kOpProtoAndCheckerMaker> {
  void operator()(const char* op_type, OpInfo* info) const {
96
    info->proto_ = new proto::OpProto;
97
    info->checker_ = new OpAttrChecker();
Y
Yu Yang 已提交
98 99 100 101
    T maker;
    maker.SetProto(info->proto_);
    maker.SetChecker(info->checker_);
    maker.Make();
102 103 104 105 106 107 108 109 110 111 112 113
    maker.Validate();
    info->proto_->set_type(op_type);
    PADDLE_ENFORCE(
        info->proto_->IsInitialized(),
        "Fail to initialize %s's OpProto, because %s is not initialized",
        op_type, info->proto_->InitializationErrorString());
  }
};

template <typename T>
struct OpInfoFiller<T, kGradOpDescMaker> {
  void operator()(const char* op_type, OpInfo* info) const {
114
    info->grad_op_maker_ = [](
Y
Yu Yang 已提交
115
        const OpDesc& fwd_op,
116
        const std::unordered_set<std::string>& no_grad_set,
Y
Yu Yang 已提交
117
        std::unordered_map<std::string, std::string>* grad_to_var,
Y
Yu Yang 已提交
118
        const std::vector<BlockDesc*>& grad_block) {
Y
Yu Yang 已提交
119
      T maker(fwd_op, no_grad_set, grad_to_var, grad_block);
120 121
      return maker();
    };
122 123
  }
};
Y
Yu Yang 已提交
124 125 126 127

template <typename T>
struct OpInfoFiller<T, kVarTypeInference> {
  void operator()(const char* op_type, OpInfo* info) const {
Y
Yu Yang 已提交
128
    info->infer_var_type_ = [](const OpDesc& fwd_op, BlockDesc* block) {
Y
Yu Yang 已提交
129 130 131 132 133 134
      T inference;
      inference(fwd_op, block);
    };
  }
};

135 136 137 138 139 140 141 142 143 144
template <typename T>
struct OpInfoFiller<T, kShapeInference> {
  void operator()(const char* op_type, OpInfo* info) const {
    info->infer_shape_ = [](InferShapeContext* ctx) {
      T inference;
      inference(ctx);
    };
  }
};

145 146 147 148
}  // namespace details

}  // namespace framework
}  // namespace paddle