activation.py 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

__all__ = []

17
from paddle import _C_ops, _legacy_C_ops
18
from paddle.fluid.framework import dygraph_only
19 20
from paddle import in_dynamic_mode
from paddle.fluid.layer_helper import LayerHelper
21

22

23
def relu(x, name=None):
24
    """
25
    sparse relu activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
26 27 28

    .. math::

29
        out = max(x, 0)
30 31

    Parameters:
32
        x (Tensor): The input Sparse Tensor with data type float32, float64.
33 34 35
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

36 37
    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .
38 39 40 41 42

    Examples:
        .. code-block:: python

            import paddle
43

44 45 46 47
            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.nn.functional.relu(sparse_x)
            # [0., 0., 1.]
48
    """
49 50 51 52 53 54 55 56 57 58 59
    if in_dynamic_mode():
        return _C_ops.sparse_relu(x)
    else:
        op_type = 'sparse_relu'
        helper = LayerHelper(op_type)
        out = helper.create_sparse_variable_for_type_inference(x.dtype)
        helper.append_op(type=op_type,
                         inputs={'x': x},
                         outputs={'out': out},
                         attrs={})
        return out
60 61


62 63 64
@dygraph_only
def softmax(x, axis=-1, name=None):
    """
65
    sparse softmax activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
66 67

    Note:
68
        Only support axis=-1 for SparseCsrTensor, which is faster when read data
69 70
        by row (axis=-1).

71
    From the point of view of dense matrix, for each row :math:`i` and each column :math:`j`
72 73 74 75 76
    in the matrix, we have:

    .. math::

        softmax_ij = \frac{\exp(x_ij - max_j(x_ij))}{\sum_j(exp(x_ij - max_j(x_ij))}
77

78 79 80 81 82 83 84 85
    Parameters:
        x (Tensor): The input tensor. It can be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64.
        axis (int, optional): The axis along which to perform softmax calculations. Only support -1 for SparseCsrTensor.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: SparseCoo or SparseCsr, whose layout is the same with `x` .
86

87 88 89 90 91 92 93
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            paddle.seed(100)

94 95 96 97 98 99 100
            mask = np.random.rand(3, 4) < 0.5
            np_x = np.random.rand(3, 4) * mask
            # [[0.         0.         0.96823406 0.19722934]
            #  [0.94373937 0.         0.02060066 0.71456372]
            #  [0.         0.         0.         0.98275049]]

            csr = paddle.to_tensor(np_x).to_sparse_csr()
101 102 103
            # Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0, 2, 5, 6],
            #        cols=[2, 3, 0, 2, 3, 3],
104 105 106 107
            #        values=[0.96823406, 0.19722934, 0.94373937, 0.02060066, 0.71456372,
            #                0.98275049])

            out = paddle.incubate.sparse.nn.functional.softmax(csr)
108 109 110
            # Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0, 2, 5, 6],
            #        cols=[2, 3, 0, 2, 3, 3],
111 112
            #        values=[0.68373820, 0.31626180, 0.45610887, 0.18119845, 0.36269269,
            #                1.        ])
113

114
    """
115
    return _C_ops.sparse_softmax(x, axis)
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143


@dygraph_only
def relu6(x, name=None):
    """
    sparse relu6 activation, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        relu6(x) = min(max(0, x), 6)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 8.])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.nn.functional.relu6(sparse_x)
    """
144
    return _C_ops.sparse_relu6(x, 6.0)
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179


@dygraph_only
def leaky_relu(x, negative_slope=0.01, name=None):
    """
    sparse leaky_relu activation, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 5.])
            sparse_x = dense_x.to_sparse_coo(1)
            out = paddle.incubate.sparse.nn.functional.leaky_relu(sparse_x, 0.5)
    """
180
    return _C_ops.sparse_leaky_relu(x, negative_slope)