fc_lstm_fuse_pass.cc 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
T
tensor-tang 已提交
14

15
#include "paddle/fluid/framework/ir/fc_lstm_fuse_pass.h"
T
tensor-tang 已提交
16
#include <string>
17
#include <unordered_set>
W
wanghuancoder 已提交
18

T
tensor-tang 已提交
19
#include "paddle/fluid/framework/lod_tensor.h"
20
#include "paddle/fluid/framework/op_version_registry.h"
21 22 23 24 25

namespace paddle {
namespace framework {
namespace ir {

W
wanghuancoder 已提交
26 27
class Node;

Y
Yan Chunwei 已提交
28 29 30 31
int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope,
                bool with_fc_bias) {
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();
32

Y
Yan Chunwei 已提交
33 34
  // Build pattern
  PDNode* x = pattern->NewNode(patterns::PDNodeName(name_scope, "x"))
35 36
                  ->assert_is_op_input("mul")
                  ->assert_var_not_persistable();
Y
Yan Chunwei 已提交
37
  patterns::FC fc_pattern(pattern, name_scope);
38

Y
Yan Chunwei 已提交
39
  // fc_out is a tmp var, will be removed after fuse, so marked as intermediate.
40 41
  auto* fc_out =
      fc_pattern(x, with_fc_bias, /* with_relu */ false)->AsIntermediate();
Y
Yan Chunwei 已提交
42 43
  patterns::LSTM lstm_pattern(pattern, name_scope);
  lstm_pattern(fc_out);
44 45

  // Create New OpDesc
Y
Yan Chunwei 已提交
46 47 48
  auto lstm_creator = [&](Node* lstm, Node* input, Node* weight_x,
                          Node* weight_h, Node* bias, Node* hidden, Node* cell,
                          Node* xx, Node* fc_bias) {
49 50
    OpDesc op_desc;
    op_desc.SetType("fusion_lstm");
Y
Yan Chunwei 已提交
51
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
52 53 54 55 56
    SET_IN(X, input);
    SET_IN(WeightX, weight_x);
    SET_IN(WeightH, weight_h);
    SET_IN(Bias, bias);
#undef SET_IN
57 58
    if (with_fc_bias) {
      // Add FC-bias with LSTM-bias and create a new weight
59 60
      PADDLE_ENFORCE_NOT_NULL(
          scope, platform::errors::InvalidArgument("Scope cannot be nullptr."));
L
luotao1 已提交
61
      const std::string& new_bias_var = patterns::UniqueKey("NewBias");
62
      auto* bias_var = scope->Var(new_bias_var);
63 64
      PADDLE_ENFORCE_NOT_NULL(bias_var, platform::errors::InvalidArgument(
                                            "Bias var ptr cannot be nullptr."));
65
      auto* bias_tensor = bias_var->GetMutable<framework::LoDTensor>();
Y
Yan Chunwei 已提交
66
      auto* lstm_bias_var = scope->FindVar(bias->Name());
67 68 69
      PADDLE_ENFORCE_NOT_NULL(lstm_bias_var,
                              platform::errors::InvalidArgument(
                                  "Lstm bias var ptr cannot be nullptr."));
70 71 72
      const auto& lstm_bias_tensor = lstm_bias_var->Get<framework::LoDTensor>();
      bias_tensor->Resize(lstm_bias_tensor.dims());

Y
Yan Chunwei 已提交
73
      auto* fc_bias_var = scope->FindVar(fc_bias->Name());
74 75 76 77 78 79 80 81 82 83
      const auto& fc_bias_tensor = fc_bias_var->Get<framework::LoDTensor>();

      auto* data = bias_tensor->mutable_data<float>(platform::CPUPlace());

      for (int i = 0; i < bias_tensor->numel(); i++) {
        data[i] =
            fc_bias_tensor.data<float>()[i] + lstm_bias_tensor.data<float>()[i];
      }
      op_desc.SetInput("Bias", {new_bias_var});
    }
84 85 86

    op_desc.SetInput("H0", {});
    op_desc.SetInput("C0", {});
Y
Yan Chunwei 已提交
87 88 89 90 91
    op_desc.SetOutput("Hidden", {hidden->Name()});
    op_desc.SetOutput("Cell", {cell->Name()});
    op_desc.SetOutput("XX", {xx->Name()});
    op_desc.SetAttr("is_reverse", lstm->Op()->GetAttr("is_reverse"));
    op_desc.SetAttr("use_peepholes", lstm->Op()->GetAttr("use_peepholes"));
T
tensor-tang 已提交
92 93
    // TODO(TJ): get from attr
    op_desc.SetAttr("use_seq", true);
T
tensor-tang 已提交
94

95
// Create temp variables.
Y
Yan Chunwei 已提交
96 97
#define OP_SET_OUT(x)                            \
  const std::string x = patterns::UniqueKey(#x); \
98 99 100 101 102 103
  op_desc.SetOutput(#x, {x});

    OP_SET_OUT(BatchedGate);
    OP_SET_OUT(BatchedCellPreAct);
    OP_SET_OUT(BatchedInput);
    OP_SET_OUT(CheckedCell);
T
tensor-tang 已提交
104 105 106 107 108
    OP_SET_OUT(BatchedCell);
    OP_SET_OUT(BatchedHidden);
    OP_SET_OUT(ReorderedH0);
    OP_SET_OUT(ReorderedC0);
#undef OP_SET_OUT
109 110

    auto* op = graph->CreateOpNode(&op_desc);
111

Y
Yan Chunwei 已提交
112 113 114 115 116
    IR_NODE_LINK_TO(input, op);
    IR_NODE_LINK_TO(weight_x, op);
    IR_NODE_LINK_TO(weight_h, op);
    IR_NODE_LINK_TO(bias, op);
    IR_NODE_LINK_TO(op, hidden);
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

#define IR_NODE(x)                                 \
  VarDesc key_##x(x);                              \
  key_##x.SetPersistable(false);                   \
  auto* node_##x = graph->CreateVarNode(&key_##x); \
  IR_NODE_LINK_TO(op, node_##x);

    IR_NODE(BatchedGate);
    IR_NODE(BatchedCellPreAct);
    IR_NODE(BatchedInput);
    IR_NODE(CheckedCell);
    IR_NODE(BatchedCell);
    IR_NODE(BatchedHidden);
    IR_NODE(ReorderedH0);
    IR_NODE(ReorderedC0);
#undef IR_NODE

134 135 136
    return op;
  };

137
  int fusion_count{0};
138

139 140
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
Y
Yan Chunwei 已提交
141 142 143 144
    GET_IR_NODE_FROM_SUBGRAPH(lstm, lstm, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, lstm_pattern);
145 146 147
    GET_IR_NODE_FROM_SUBGRAPH(BatchCellPreAct, BatchCellPreAct, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(BatchGate, BatchGate, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Cell, Cell, lstm_pattern);
Y
Yan Chunwei 已提交
148 149
    GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
150
    if (with_fc_bias) {
151
      GET_IR_NODE_FROM_SUBGRAPH(fc_out, elementwise_add_out, fc_pattern);
Y
Yan Chunwei 已提交
152
      GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern);
153
      GET_IR_NODE_FROM_SUBGRAPH(mul_out, mul_out, fc_pattern);
Y
Yan Chunwei 已提交
154 155 156
      GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);
      lstm_creator(lstm, subgraph.at(x), w, Weight, Bias, Hidden, Cell, fc_out,
                   fc_bias);
157 158
      // Remove unneeded nodes.
      std::unordered_set<const Node*> marked_nodes(
159
          {mul, lstm, elementwise_add, mul_out, BatchGate, BatchCellPreAct});
160
      GraphSafeRemoveNodes(graph, marked_nodes);
161
    } else {
Y
Yan Chunwei 已提交
162 163 164
      GET_IR_NODE_FROM_SUBGRAPH(fc_out, mul_out, fc_pattern);
      lstm_creator(lstm, subgraph.at(x), w, Weight, Bias, Hidden, Cell, fc_out,
                   nullptr);
165
      // Remove unneeded nodes.
166 167
      std::unordered_set<const Node*> marked_nodes(
          {mul, lstm, BatchGate, BatchCellPreAct});
168
      GraphSafeRemoveNodes(graph, marked_nodes);
169
    }
170 171 172 173

    ++fusion_count;
  };

174
  gpd(graph, handler);
175 176 177 178

  return fusion_count;
}

179 180
void MulLstmFusePass::ApplyImpl(ir::Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
181

182 183
  int fusion_count =
      BuildFusion(graph, name_scope_, param_scope(), false /*with_fc_bias*/);
184 185 186 187

  AddStatis(fusion_count);
}

188 189
void FCLstmFusePass::ApplyImpl(ir::Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
190

191 192
  int fusion_count =
      BuildFusion(graph, name_scope_, param_scope(), true /*with_fc_bias*/);
193

194
  AddStatis(fusion_count);
195 196 197 198 199 200
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

201
REGISTER_PASS(mul_lstm_fuse_pass, paddle::framework::ir::MulLstmFusePass);
202
REGISTER_PASS(fc_lstm_fuse_pass, paddle::framework::ir::FCLstmFusePass);
203 204 205 206 207 208 209 210 211 212 213 214 215 216

REGISTER_PASS_CAPABILITY(fc_lstm_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .EQ("mul", 0)
            .EQ("elementwise_add", 0)
            .EQ("lstm", 0)
            .EQ("fusion_lstm", 0));
REGISTER_PASS_CAPABILITY(mul_lstm_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .EQ("mul", 0)
            .EQ("lstm", 0)
            .EQ("fusion_lstm", 0));