io.py 34.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
T
tangwei12 已提交
19 20
import time
import shutil
21
import six
22

23
from paddle.fluid.evaluator import Evaluator
24
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable
K
fix bug  
Kexin Zhao 已提交
25
from . import core
26 27

__all__ = [
T
tangwei12 已提交
28 29
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
    'load_persistables', 'save_inference_model', 'load_inference_model',
T
tangwei12 已提交
30
    'get_inference_program'
31 32 33 34
]


def is_parameter(var):
F
fengjiayi 已提交
35 36
    """
    Check whether the given variable is an instance of Parameter.
37 38

    Args:
F
fengjiayi 已提交
39
        var(Variable): The variable to be checked.
40 41

    Returns:
F
fengjiayi 已提交
42 43 44 45 46 47 48 49
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
50
    """
51 52 53 54
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_persistable(param)
    """
71
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
72 73
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
74
        return False
75 76 77 78 79 80 81 82
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
83
        dtype=var.dtype,
84 85 86 87 88
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


89 90 91 92 93
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
94
              filename=None):
95
    """
F
fengjiayi 已提交
96 97
    Save variables to the given directory by executor.

98 99 100 101
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
102
    are assigned, the `main_program` and the `predicate` will be ignored.
103

104 105 106
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
107
    use `filename` to specify it.
108

F
fengjiayi 已提交
109 110 111
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
112 113
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
114 115
                                    be used automatically.
                                    Default: None
116
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
117 118
                                   It has a higher priority than the `main_program`.
                                   Default: None
119 120 121 122
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
123 124
                                  `vars` is None).
                                  Default: None
125
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res

            prog = fluid.default_main_program()
            fluid.io.save_vars(executor=exe, dirname=path, main_program=prog,
                               vars=None)
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
155
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
156 157 158
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
            # saved in the same file named 'var_file' in the path "./my_paddle_model".
159 160
    """
    if vars is None:
161
        if main_program is None:
Y
Yu Yang 已提交
162
            main_program = default_main_program()
163
        if not isinstance(main_program, Program):
164 165 166 167 168
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
            dirname=dirname,
169
            vars=list(filter(predicate, main_program.list_vars())),
170
            filename=filename)
171 172 173
    else:
        save_program = Program()
        save_block = save_program.global_block()
174 175

        save_var_map = {}
176
        for each_var in vars:
177 178 179
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
180
            new_var = _clone_var_in_block_(save_block, each_var)
181
            if filename is None:
182 183 184 185 186 187 188 189
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                save_var_map[new_var.name] = new_var

190
        if filename is not None:
191 192 193 194
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

195
            save_block.append_op(
196 197
                type='save_combine',
                inputs={'X': save_var_list},
198
                outputs={},
199
                attrs={'file_path': os.path.join(dirname, filename)})
200

201 202 203
        executor.run(save_program)


204
def save_params(executor, dirname, main_program=None, filename=None):
205
    """
F
fengjiayi 已提交
206 207 208
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

209 210 211
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
212 213
    the file name.

214 215 216
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
F
fengjiayi 已提交
217 218 219 220 221 222 223 224 225
    and `load_persistables()` instead.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
226 227
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
228 229 230 231 232 233 234 235 236 237 238 239
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
240
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
241
                                 main_program=None)
242 243 244 245
    """
    save_vars(
        executor,
        dirname=dirname,
246
        main_program=main_program,
247
        vars=None,
248
        predicate=is_parameter,
249
        filename=filename)
250 251


252
def save_persistables(executor, dirname, main_program=None, filename=None):
253
    """
254 255
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
256 257
    or file `filename`.

258 259 260
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
261 262 263 264 265
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
266 267
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
268 269
                                    program will be used automatically.
                                    Default: None
270
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
271 272 273 274 275 276 277 278 279 280 281 282
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
283
            fluid.io.save_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
284
                                       main_program=None)
285 286 287 288
    """
    save_vars(
        executor,
        dirname=dirname,
289
        main_program=main_program,
290
        vars=None,
291
        predicate=is_persistable,
292
        filename=filename)
293 294


295 296 297 298 299
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
300
              filename=None):
301
    """
F
fengjiayi 已提交
302 303
    Load variables from the given directory by executor.

304 305 306 307
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
308 309
    are assigned, the `main_program` and the `predicate` will be ignored.

310 311 312
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
313
    use `filename` to specify it.
314

F
fengjiayi 已提交
315 316 317
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
318 319
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
320 321
                                    be used automatically.
                                    Default: None
322
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
323 324
                                   It has a higher priority than the `main_program`.
                                   Default: None
325 326 327 328
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
329 330
                                  `vars` is None).
                                  Default: None
331
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
351

F
fengjiayi 已提交
352 353 354 355 356 357 358 359 360
            prog = fluid.default_main_program()
            fluid.io.load_vars(executor=exe, dirname=path, main_program=prog,
                               vars=None)
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
361
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
362
                               filename="vars_file")
363
            # var_a, var_b and var_c will be loaded. And they are supposed to haven
F
fengjiayi 已提交
364
            # been saved in the same file named 'var_file' in the path "./my_paddle_model".
365 366
    """
    if vars is None:
367
        if main_program is None:
Y
Yu Yang 已提交
368
            main_program = default_main_program()
369
        if not isinstance(main_program, Program):
370 371 372 373 374
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
            dirname=dirname,
T
tangwei12 已提交
375
            main_program=main_program,
376
            vars=list(filter(predicate, main_program.list_vars())),
377
            filename=filename)
378 379 380
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
381 382

        load_var_map = {}
383 384
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
385 386
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
387
            new_var = _clone_var_in_block_(load_block, each_var)
388
            if filename is None:
389 390 391 392 393 394 395 396
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                load_var_map[new_var.name] = new_var

397
        if filename is not None:
398 399 400 401
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

402
            load_block.append_op(
403
                type='load_combine',
404
                inputs={},
405
                outputs={"Out": load_var_list},
406
                attrs={'file_path': os.path.join(dirname, filename)})
407 408
        executor.run(load_prog)

409 410
        # load slice vars on pserver, if have it.
        _load_slice_up_vars(executor, dirname,
T
tangwei12 已提交
411
                            main_program._slice_vars_and_attrs)
412

413

414
def load_params(executor, dirname, main_program=None, filename=None):
415
    """
F
fengjiayi 已提交
416
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
417
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
418 419
    the file `filename`.

420 421 422
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
423 424
    `filename` to specify the file name.

425 426 427 428
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
F
fengjiayi 已提交
429 430 431 432 433 434 435 436

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
437
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
438 439 440 441 442 443 444 445 446 447 448 449
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
450
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
451
                                main_program=None)
452 453
    """
    load_vars(
454 455 456
        executor,
        dirname=dirname,
        main_program=main_program,
457
        predicate=is_parameter,
458
        filename=filename)
459 460


461
def load_persistables(executor, dirname, main_program=None, filename=None):
462
    """
463 464
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
465 466
    `dirname` or the file `filename`.

467 468 469
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
470 471 472 473 474
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
475 476
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
477 478
                                    program will be used automatically.
                                    Default: None
479
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
480 481 482 483 484 485 486 487 488 489 490 491
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
492
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
493
                                       main_program=None)
494 495
    """
    load_vars(
496 497 498
        executor,
        dirname=dirname,
        main_program=main_program,
499
        predicate=is_persistable,
500
        filename=filename)
501 502


503 504
def get_inference_program(target_vars, main_program=None):
    if main_program is None:
Y
Yu Yang 已提交
505
        main_program = default_main_program()
506 507
    if not isinstance(target_vars, list):
        target_vars = [target_vars]
W
wanghaoshuang 已提交
508 509 510
    vars = []
    for var in target_vars:
        if isinstance(var, Evaluator):
W
wanghaoshuang 已提交
511 512
            vars.extend(var.states)
            vars.extend(var.metrics)
W
wanghaoshuang 已提交
513 514 515
        else:
            vars.append(var)
    pruned_program = main_program.prune(targets=vars)
516 517 518 519
    inference_program = pruned_program.inference_optimize()
    return inference_program


520 521 522
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
523 524 525
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
526 527
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
528 529 530
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
531

532
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
533
        out = global_block.var(name)
W
Wu Yi 已提交
534
        global_block._prepend_op(
K
Kexin Zhao 已提交
535 536
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
537
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
538 539 540
            attrs={'col': i})


541 542 543
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
544 545
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
546 547 548
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
549

550
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
551 552 553 554 555 556 557
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


558 559 560 561
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
562
                         main_program=None,
563
                         model_filename=None,
564 565
                         params_filename=None,
                         export_for_deployment=True):
566
    """
F
fengjiayi 已提交
567 568 569 570 571
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.

    Args:
        dirname(str): The directory path to save the inference model.
572
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
573
                                     during inference.
574
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
575 576
                                     results.
        executor(Executor): The executor that saves the inference model.
577 578
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
579 580
                                    the default main program will be used.
                                    Default: None.
581 582
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
583
                                  `__model__` will be used.
584 585
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
586
                                   in separate files .
587 588
        export_for_deployment(bool): remove the read ops that are added by py_reader
                                    for cpp inference lib. Default True
589

F
fengjiayi 已提交
590 591 592 593 594 595 596 597 598
    Returns:
        None

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
599

F
fengjiayi 已提交
600 601 602 603 604
            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[predict_var], executor=exe)

605 606 607
            # In this exsample, the function will prune the default main program
            # to make it suitable for infering the `predict_var`. The pruned
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
608
            # and parameters are going to be saved in separate files under folder
609
            # "./infer_model".
610 611

    """
M
minqiyang 已提交
612
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
613 614
        feeded_var_names = [feeded_var_names]
    else:
Q
Qiao Longfei 已提交
615
        if len(feeded_var_names) > 0:
616
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
617
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
618
                    isinstance(name, six.string_types)
619
                    for name in feeded_var_names)):
M
minqiyang 已提交
620
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
621 622

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
623
        target_vars = [target_vars]
F
fengjiayi 已提交
624 625 626 627 628
    else:
        if not (bool(target_vars) and all(
                isinstance(var, Variable) for var in target_vars)):
            raise ValueError("'target_vars' should be a list of Variable.")

629
    if main_program is None:
Y
Yu Yang 已提交
630
        main_program = default_main_program()
631
    copy_program = main_program.clone()
632 633 634 635

    if not os.path.isdir(dirname):
        os.makedirs(dirname)

636
    # Clear the is_target information and remove the existed feed and fetch op
637
    global_block = copy_program.global_block()
638 639 640
    for i, op in enumerate(global_block.ops):
        op.desc.set_is_target(False)
        if op.type == "feed" or op.type == "fetch":
W
Wu Yi 已提交
641
            global_block._remove_op(i)
642
    copy_program.desc.flush()
643

644
    pruned_program = copy_program.prune(targets=target_vars)
645 646
    inference_program = pruned_program.inference_optimize(
        export_for_deployment=export_for_deployment)
647 648
    fetch_var_names = [v.name for v in target_vars]

K
Kexin Zhao 已提交
649 650
    prepend_feed_ops(inference_program, feeded_var_names)
    append_fetch_ops(inference_program, fetch_var_names)
651

652 653
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
654
    else:
655 656
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)
657

658 659 660 661
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)

    with open(model_filename, "wb") as f:
662
        f.write(inference_program.desc.serialize_to_string())
663

664
    save_persistables(executor, dirname, inference_program, params_filename)
665

T
tangwei12 已提交
666
    # if there is lookup table, the trainer 0 will notify all pserver to save.
T
tangwei12 已提交
667 668 669 670 671
    if main_program._is_distributed and main_program._is_chief and main_program._distributed_lookup_table:
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        _save_lookup_tables_by_notify(executor, lookup_table_filename,
                                      main_program._distributed_lookup_table,
                                      main_program._endpoints)
T
tangwei12 已提交
672

673

674 675 676
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
677 678
                         params_filename=None,
                         pserver_endpoints=None):
679 680 681
    """
    Load inference model from a directory

F
fengjiayi 已提交
682 683 684 685
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
686
                                  If it is None, the default filename
F
fengjiayi 已提交
687 688 689
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
690 691 692
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
693
                                   files, set it as 'None'.
694 695 696 697
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
698 699 700

    Returns:
        tuple: The return of this function is a tuple with three elements:
701 702 703 704 705
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
706 707 708 709 710 711 712 713 714 715
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
716
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
717
            [inference_program, feed_target_names, fetch_targets] =
F
fengjiayi 已提交
718 719 720 721 722
                fluid.io.load_inference_model(dirname=path, executor=exe)
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

723 724 725
            # if we need lookup table, we will use:
            fluid.io.load_inference_model(dirname=path, executor=exe, pserver_endpoints=endpoints)

726 727 728 729 730
            # In this exsample, the inference program was saved in the
            # "./infer_model/__model__" and parameters were saved in
            # separate files in ""./infer_model".
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
731
            # program to get the inference result.
732

733 734 735 736
    """
    if not os.path.isdir(dirname):
        raise ValueError("There is no directory named '%s'", dirname)

737 738
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
739
    else:
740 741 742 743 744
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
745

746
    with open(model_filename, "rb") as f:
747 748
        program_desc_str = f.read()

749
    program = Program.parse_from_string(program_desc_str)
750
    load_persistables(executor, dirname, program, params_filename)
751

T
tangwei12 已提交
752
    if pserver_endpoints:
T
tangwei12 已提交
753
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
754

755 756
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
757 758 759 760 761
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
762 763


T
tangwei12 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
def _save_lookup_tables_by_notify(executor, dirname, lookup_table,
                                  pserver_endpoints):
    """
    This function will send checkpoint notify message from Trainer 0
    to all the pservers.
    The checkpoint notify message contains lookup table name,
    the absolute path on pserver to save lookup_table.

    Args:
        executor(Executor): The executor to run for send checkpoint notify.
        dirname(str): The folder where to save.
        lookup_table(string): the lookup table name, when use distribute
            lookup table, we can get lookup table name by DistributeTranspiler.
            table_name
        ps_endpoint_list(list): the parameter server ip:port list.
            when use distribute lookup table, we can get ps_endpoint_list by
            distribute arguments.
    Return:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            table_name = "share_w"
            ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]

            _save_pserver_vars_by_notify(executor=exe,
                    dirname=param_path, lookup_table=table_name,
                    pserver_endpoints=ps_endpoints)
    """

    pserver_notify_program = Program()
    pserver_notify_block = pserver_notify_program.global_block()

    attrs = {}
T
bug fix  
tangwei12 已提交
801
    attrs['epmap'] = pserver_endpoints
T
tangwei12 已提交
802 803 804 805 806 807 808 809 810 811 812
    attrs['dir'] = dirname
    attrs['lookup_table'] = lookup_table

    pserver_notify_block.append_op(
        type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
    executor.run(pserver_notify_program)


def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
813 814
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
815
    program._sync_with_cpp()
T
tangwei12 已提交
816
    return program
T
tangwei12 已提交
817 818


X
xuwei06 已提交
819 820
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
821 822 823 824 825 826 827 828 829 830 831
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
832

F
fengjiayi 已提交
833 834
    Examples:
        .. code-block:: python
X
xuwei06 已提交
835

F
fengjiayi 已提交
836 837 838
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
839

X
xuwei06 已提交
840
    """
X
xuwei06 已提交
841 842
    assert is_parameter(para)

X
xuwei06 已提交
843 844 845 846 847 848 849 850
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
851
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
852

F
fengjiayi 已提交
853 854 855 856 857 858 859
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
860

F
fengjiayi 已提交
861 862
    Returns:
        numpy.array: The parameter's values.
863

F
fengjiayi 已提交
864 865 866 867 868
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
869

F
fengjiayi 已提交
870 871 872 873 874
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
875 876
    """
    if program is None:
Y
Yu Yang 已提交
877
        program = default_main_program()
X
xuwei06 已提交
878 879
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
T
tangwei12 已提交
880 881


T
tangwei12 已提交
882 883
def _load_slice_up_vars(executor, dirname, slice_vars_and_attrs):
    if not slice_vars_and_attrs:
884 885 886 887 888
        return

    load_prog = Program()
    load_block = load_prog.global_block()

T
tangwei12 已提交
889
    for var_tuple in slice_vars_and_attrs:
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
        orig_var = var_tuple[0]
        start = var_tuple[1]
        slice_var = var_tuple[2]
        end = start + reduce(lambda x, y: x * y, slice_var.shape)

        clone_orig_var = load_block.create_var(
            name=orig_var.name,
            type=orig_var.type,
            shape=orig_var.shape,
            dtype=orig_var.dtype,
            persistable=True)

        clone_slice_var = load_block.create_var(
            name=slice_var.name,
            type=slice_var.type,
            shape=slice_var.shape,
            dtype=slice_var.dtype,
            persistable=True)

        load_block.append_op(
            type='load',
            inputs={},
            outputs={'Out': [clone_orig_var]},
            attrs={'file_path': os.path.join(dirname, clone_orig_var.name)})
        load_block.append_op(
            type="slice",
            inputs={'Input': clone_orig_var},
            outputs={'Out': clone_slice_var},
            attrs={'axes': [0],
                   'starts': [start],
                   'ends': [end]})

    executor.run(load_prog)