lookup_table_v2_op.cu 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/lookup_table_v2_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {

template <typename T, int BlockDimX, int BlockDimY, int GridDimX,
          bool PaddingFlag>
__global__ void LookupTableV2(T *output, const T *table, const int64_t *ids,
                              const int64_t N, const int64_t K, const int64_t D,
                              const int64_t padding_idx) {
  int idx = threadIdx.x;
  int idy = blockIdx.x + threadIdx.y * GridDimX;

  while (idy < K) {
    int64_t id = ids[idy];
    T *out = output + idy * D;
    const T *tab = table + id * D;
    for (int i = idx; i < D; i += BlockDimX) {
      if (PaddingFlag) {
        if (id == padding_idx)
          out[i] = static_cast<T>(0);
        else
          out[i] = tab[i];
      } else {
        out[i] = tab[i];
      }
    }
    idy += BlockDimY * GridDimX;
  }
}

template <typename T, int BlockDimX, int BlockDimY, int GridDimX>
__global__ void LookupTableV2Grad(T *table, const T *output, const int64_t *ids,
                                  const int64_t N, const int64_t K,
                                  const int64_t D) {
  int idx = threadIdx.x;
  int idy = blockIdx.x + threadIdx.y * GridDimX;

  while (idy < K) {
    int64_t id = ids[idy];
    const T *out = output + idy * D;
    T *tab = table + id * D;
    for (int i = idx; i < D; i += BlockDimX) {
      paddle::platform::CudaAtomicAdd(&tab[i], out[i]);
    }
    idy += BlockDimY * GridDimX;
  }
}

T
tangwei12 已提交
68 69 70 71 72 73 74 75
template <typename T>
__global__ void InputTypeCovert(const T *in_ids, const int64_t K,
                                int64_t *out_ids) {
  for (int i = 0; i < K; i++) {
    out_ids[i] = (int64_t)(in_ids[i]);
  }
}

76 77 78 79 80 81 82 83 84
template <typename T>
class LookupTableV2CUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *table_t = context.Input<LoDTensor>("W");
    auto *ids_t = context.Input<LoDTensor>("Ids");
    auto *output_t = context.Output<LoDTensor>("Out");
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");

H
hong 已提交
85 86
    auto id_name = context.InputNames("Ids").front();
    auto out_name = context.OutputNames("Out").front();
87 88 89 90 91

    size_t N = table_t->dims()[0];
    size_t D = table_t->dims()[1];
    size_t K = ids_t->numel();

92 93
    dim3 threads(256, 4);
    dim3 grids(80, 1);
94

T
tangwei12 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    // copy GPU memory to CPU pinned memory
    framework::Vector<int64_t> ids;
    ids.resize(K);

    const int64_t *ids_p = nullptr;

    if (ids_t->type() == framework::proto::VarType::INT32) {
      InputTypeCovert<
          int><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
          ids_t->data<int>(), K, ids.MutableData(context.GetPlace()));
      ids_p = ids.MutableData(context.GetPlace());
    } else {
      ids_p = ids_t->data<int64_t>();
    }

T
tangwei12 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    for (int64_t i = 0; i < K; ++i) {
      PADDLE_ENFORCE_GE(
          ids[i], 0,
          platform::errors::InvalidArgument(
              "Variable value (input) of OP(paddle.nn.embedding) "
              "expected >= 0 and < %ld, but got %ld. Please check input value.",
              N, ids[i]));
      PADDLE_ENFORCE_LT(
          ids[i], N,
          platform::errors::InvalidArgument(
              "Variable value (input) of OP(paddle.nn.embedding) "
              "expected >= 0 and < %ld, but got %ld. Please check input value.",
              N, ids[i]));
    }

T
tangwei12 已提交
125 126 127
    auto *table = table_t->data<T>();
    auto *output = output_t->mutable_data<T>(context.GetPlace());

128 129
    if (padding_idx == -1)
      LookupTableV2<
130
          T, 256, 4, 80,
131
          false><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
T
tangwei12 已提交
132
          output, table, ids_p, N, K, D, padding_idx);
133 134
    else
      LookupTableV2<
135
          T, 256, 4, 80,
136
          true><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
T
tangwei12 已提交
137
          output, table, ids_p, N, K, D, padding_idx);
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
  }
};

template <typename T>
class LookupTableV2GradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto &dev_ctx =
        context.template device_context<platform::CUDADeviceContext>();
    bool is_sparse = context.Attr<bool>("is_sparse");

    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
    if (is_sparse) {
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *table = context.Input<LoDTensor>("W");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));

      auto *ids_data = ids->data<int64_t>();
      int64_t ids_num = ids->numel();
T
tangwei12 已提交
159 160
      dim3 threads(128, 8);
      dim3 grids(8, 1);
161 162 163 164
      auto stream = dev_ctx.stream();
      // copy GPU memory to CPU pinned memory
      framework::Vector<int64_t> new_rows;
      new_rows.resize(ids_num);
165
      auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace());
166

T
tangwei12 已提交
167 168 169 170 171 172 173 174 175 176
      if (ids->type() == framework::proto::VarType::INT32) {
        InputTypeCovert<
            int><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
            ids->data<int>(), ids_num,
            new_rows.MutableData(context.GetPlace()));
      } else {
        memory::Copy(gpu_place, new_rows.CUDAMutableData(context.GetPlace()),
                     gpu_place, ids_data, ids_num * sizeof(int64_t), stream);
      }

177 178 179 180 181 182 183 184 185
      d_table->set_rows(new_rows);

      auto *d_table_value = d_table->mutable_value();
      d_table_value->Resize({ids_num, table->dims()[1]});
      d_table_value->mutable_data<T>(context.GetPlace());

      auto *d_table_data = d_table_value->data<T>();
      auto *d_output_data = d_output->data<T>();
      auto d_output_dims = d_output->dims();
186 187 188
      auto d_output_dims_2d =
          framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output_dims_2d,
189 190 191 192 193 194
                        platform::errors::InvalidArgument(
                            "ShapeError: The shape of lookup_table@Grad and "
                            "output@Grad should be same. "
                            "But received lookup_table@Grad's shape = [%s], "
                            "output@Grad's shape = [%s].",
                            d_table_value->dims(), d_output_dims_2d));
195 196 197 198 199 200 201 202 203 204 205
      memory::Copy(gpu_place, d_table_data, gpu_place, d_output_data,
                   d_output->numel() * sizeof(T), stream);

    } else {
      auto ids_t = context.Input<LoDTensor>("Ids");
      auto d_output_t = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto d_table_t = context.Output<LoDTensor>(framework::GradVarName("W"));

      int N = d_table_t->dims()[0];
      int D = d_table_t->dims()[1];
      int K = ids_t->numel();
T
tangwei12 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

      dim3 threads(128, 8);
      dim3 grids(8, 1);
      // copy GPU memory to CPU pinned memory
      framework::Vector<int64_t> ids;
      ids.resize(K);

      const int64_t *ids_p = nullptr;

      if (ids_t->type() == framework::proto::VarType::INT32) {
        InputTypeCovert<
            int><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
            ids_t->data<int>(), K, ids.MutableData(context.GetPlace()));
        ids_p = ids.MutableData(context.GetPlace());
      } else {
        ids_p = ids_t->data<int64_t>();
      }

224 225 226 227 228 229 230
      const T *d_output = d_output_t->data<T>();
      T *d_table = d_table_t->mutable_data<T>(context.GetPlace());

      auto t = framework::EigenVector<T>::Flatten(*d_table_t);
      t.device(*dev_ctx.eigen_device()) = t.constant(static_cast<T>(0));

      LookupTableV2Grad<T, 128, 8, 8><<<grids, threads, 0, dev_ctx.stream()>>>(
T
tangwei12 已提交
231
          d_table, d_output, ids_p, N, K, D);
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(lookup_table_v2, ops::LookupTableV2CUDAKernel<float>,
                        ops::LookupTableV2CUDAKernel<double>,
                        ops::LookupTableV2CUDAKernel<plat::float16>);
REGISTER_OP_CUDA_KERNEL(lookup_table_v2_grad,
                        ops::LookupTableV2GradCUDAKernel<float>,
                        ops::LookupTableV2GradCUDAKernel<double>,
                        ops::LookupTableV2GradCUDAKernel<plat::float16>);