deformable_conv_v1_op.cc 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/deformable_conv_v1_op.h"
#include <memory>
#include "paddle/fluid/operators/conv_op.h"

namespace paddle {
namespace operators {
class DeformableConvV1OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input",
             "(Tensor) The input of deformable conv op. "
             "The shape of input is "
             "[N, channel_in, H, W]");
    AddInput("Offset",
             "(Tensor) The input offset. "
             "The shape of the offset is "
             "[N, deformable_groups * kernel_w * kernel_h * 2, H, W");
    AddInput("Filter",
             "(Tensor) The Input Filter "
             "The shape of the wight is "
             "[num_filters, channel_in, kernel_h, kernel_w.");
    AddOutput("Output",
              "(Tensor) The output. "
              "The shape of the output tensor is "
              "[N, num_filters, out_height, out_width]].");
    AddAttr<std::vector<int>>("strides",
                              "(vector<int> default:{1, 1}), the "
                              "strides(h_stride, w_stride) of "
                              "convolution operator.")
        .SetDefault({1, 1});
    AddAttr<std::vector<int>>("paddings",
                              "(vector<int> default:{0,0}), the "
                              "paddings(h_pad, w_pad) of "
                              "convolution operator. ")
        .SetDefault({0, 0});
    AddAttr<std::vector<int>>("dilations",
                              "(vector<int> default:{1, 1}), the "
                              "dilations(h_dilation, w_dilation) of "
                              "convolution operator.")
        .SetDefault({1, 1});
    AddAttr<int>(
        "groups",
        "(int default:1), the groups number of the convolution operator. "
        "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
        "when group=2, the first half of the filters is only connected to the "
        "first half of the input channels, while the second half of the "
        "filters "
        "is only connected to the second half of the input channels.")
        .SetDefault(1);
    AddAttr<int>("deformable_groups",
                 "(int default:1), the number of the deformable groups.")
        .SetDefault(1);
    AddAttr<int>("im2col_step",
                 "im2col maximum number of image per computation")
        .SetDefault(64);
    AddComment(R"DOC(
**Deformable Convolution v1 Operator**

Deformable Convolution is a new method based Convolution which feature has offset 
in spatial location.

1. Get offset of each pixel in feature map with convolution layers which number 
   of channels should be double of weight size.

2. Add offset to pixel to get new location and the new value which are computed 
   directly through bilinear interpolation with four nearest pixel.

3. Get the product of pixel and weight as result

Compute 2-D deformable convolution on 4-D input.

Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:

$$
y(p) = \\sum_{k=1}^{K}{w_k * x(p + p_k + \\Delta p_k)}
$$

Where $$\\Delta p_k$$ is the learnable offset for the k-th location, respectively.

Refer to 'https://arxiv.org/abs/1703.06211 '<https://arxiv.org/abs/1703.06211>

Example:
  Input:
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
       Offset shape: $(N, 2 * deformable_groups, * H_f * W_f, H_{out}, W_{out})$
  Output:
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
                     where $H_{out}, W_{out}$ must be equal to $H_{in}, W_{in}$ respectively.
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
)DOC");
  }
};

class DeformableConvV1Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override {
117 118 119 120 121 122 123 124
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input",
                   "deformable_conv_v1");
    OP_INOUT_CHECK(ctx->HasInput("Offset"), "Input", "Offset",
                   "deformable_conv_v1");
    OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter",
                   "deformable_conv_v1");
    OP_INOUT_CHECK(ctx->HasOutput("Output"), "Output", "Output",
                   "deformable_conv_v1");
125 126 127 128 129 130 131 132 133 134 135 136 137 138

    auto in_dims = ctx->GetInputDim("Input");
    auto filter_dims = ctx->GetInputDim("Filter");
    auto offset_dims = ctx->GetInputDim("Offset");

    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
    std::vector<int> dilations =
        ctx->Attrs().Get<std::vector<int>>("dilations");
    int groups = ctx->Attrs().Get<int>("groups");
    int deformable_groups = ctx->Attrs().Get<int>("deformable_groups");
    int im2col_step = ctx->Attrs().Get<int>("im2col_step");

    PADDLE_ENFORCE_EQ(
139 140 141 142 143 144 145 146
        in_dims.size(), 4,
        platform::errors::InvalidArgument(
            "Conv input should be 4-D tensor, get %u", in_dims.size()));
    PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                      platform::errors::InvalidArgument(
                          "Conv input dimension and filter dimension should be "
                          "the same. the diff is [%d] vs [%d]",
                          in_dims.size(), filter_dims.size()));
147 148
    PADDLE_ENFORCE_EQ(
        in_dims.size() - strides.size(), 2U,
149 150
        platform::errors::InvalidArgument("Conv input dimension and strides "
                                          "dimension should be consistent."));
151
    PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
152 153 154 155
                      platform::errors::InvalidArgument(
                          "Conv paddings dimension and Conv strides dimension "
                          "should be the same. The diff is [%d] vs [%d]",
                          paddings.size(), strides.size()));
156

157 158 159 160 161
    PADDLE_ENFORCE_EQ(
        in_dims[1], filter_dims[1] * groups,
        platform::errors::InvalidArgument(
            "The number of input channels should be equal to filter "
            "channels * groups."));
162 163 164 165
    PADDLE_ENFORCE_EQ(
        filter_dims[0] % groups, 0,
        "The number of output channels should be divided by groups.");
    PADDLE_ENFORCE_EQ(filter_dims[0] % deformable_groups, 0,
166 167 168
                      platform::errors::InvalidArgument(
                          "The number of output channels should be "
                          "divided by deformable groups."));
169 170 171 172

    if (in_dims[0] > im2col_step) {
      PADDLE_ENFORCE_EQ(
          in_dims[0] % im2col_step, 0U,
173 174
          platform::errors::InvalidArgument(
              "Input batchsize must be smaller than or divide im2col_step"));
175 176 177
    }

    for (size_t i = 0; i < strides.size(); ++i) {
178 179
      PADDLE_ENFORCE_GT(strides[i], 0U, platform::errors::InvalidArgument(
                                            "stride %d size incorrect", i));
180 181
    }
    for (size_t i = 0; i < dilations.size(); ++i) {
182 183
      PADDLE_ENFORCE_GT(dilations[i], 0U, platform::errors::InvalidArgument(
                                              "dilation %d size incorrect", i));
184 185 186 187
    }

    std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
    for (size_t i = 0; i < strides.size(); ++i) {
C
chengjuntao 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
      if ((!ctx->IsRuntime()) &&
          (in_dims[i + 2] <= 0 || filter_dims[i + 2] <= 0)) {
        output_shape.push_back(-1);
      } else {
        output_shape.push_back(ConvOutputSize(in_dims[i + 2],
                                              filter_dims[i + 2], dilations[i],
                                              paddings[i], strides[i]));
      }
    }
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(
          output_shape[1] % deformable_groups, 0U,
          platform::errors::InvalidArgument(
              "output num_filter must divide deformable group size."));
      PADDLE_ENFORCE_EQ(output_shape[2], offset_dims[2],
                        platform::errors::InvalidArgument(
204 205 206
                            "output height must equal to offset map height. "
                            "The diff is [%d] vs [%d]",
                            output_shape[2], offset_dims[2]));
C
chengjuntao 已提交
207 208
      PADDLE_ENFORCE_EQ(output_shape[3], offset_dims[3],
                        platform::errors::InvalidArgument(
209 210 211
                            "output width must equal to offset map width. The "
                            "diff is [%d] vs [%d]",
                            output_shape[3], offset_dims[3]));
C
chengjuntao 已提交
212 213 214 215 216 217 218 219 220
      PADDLE_ENFORCE_EQ(
          offset_dims[1] % (filter_dims[2] * filter_dims[3]), 0U,
          platform::errors::InvalidArgument(
              "offset filter must divide deformable group size."));
      PADDLE_ENFORCE_EQ(
          offset_dims[1] / (2 * filter_dims[2] * filter_dims[3]),
          deformable_groups,
          platform::errors::InvalidArgument(
              "offset filter must divide deformable group size."));
221 222 223 224 225 226 227
    }
    ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
228 229 230
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
231 232 233
  }
};

H
hong 已提交
234 235
template <typename T>
class DeformableConvV1GradOpMaker : public framework::SingleGradOpMaker<T> {
236
 public:
H
hong 已提交
237
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
238 239

 protected:
240
  void Apply(GradOpPtr<T> op) const override {
241
    op->SetType("deformable_conv_v1_grad");
H
hong 已提交
242 243 244 245
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("Offset", this->Input("Offset"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
246

H
hong 已提交
247 248 249
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Offset"), this->InputGrad("Offset"));
250

H
hong 已提交
251
    op->SetAttrMap(this->Attrs());
252 253 254 255 256 257 258 259 260 261 262 263
  }
};

class DeformableConvV1GradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto in_dims = ctx->GetInputDim("Input");
    auto filter_dims = ctx->GetInputDim("Filter");
    auto offset_dims = ctx->GetInputDim("Offset");

264 265
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Output")), "Input",
                   "Output@Grad", "deformable_conv_v1_grad");
266 267 268 269 270 271 272 273 274 275 276 277 278 279
    if (ctx->HasOutput(framework::GradVarName("Input"))) {
      ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Filter"))) {
      ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Offset"))) {
      ctx->SetOutputDim(framework::GradVarName("Offset"), offset_dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
280 281 282
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
283 284 285 286 287 288 289 290
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(deformable_conv_v1, ops::DeformableConvV1Op,
                  ops::DeformableConvV1OpMaker,
H
hong 已提交
291 292
                  ops::DeformableConvV1GradOpMaker<paddle::framework::OpDesc>,
                  ops::DeformableConvV1GradOpMaker<paddle::imperative::OpBase>);
293 294 295 296 297 298
REGISTER_OPERATOR(deformable_conv_v1_grad, ops::DeformableConvV1GradOp);

REGISTER_OP_CPU_KERNEL(deformable_conv_v1,
                       ops::DeformableConvV1CPUKernel<float>);
REGISTER_OP_CPU_KERNEL(deformable_conv_v1_grad,
                       ops::DeformableConvV1GradCPUKernel<float>);