custom_tensor_test.cc 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "glog/logging.h"
#include "gtest/gtest.h"
17
#include "paddle/fluid/extension/include/ext_all.h"
18 19 20 21 22
#include "paddle/fluid/framework/custom_tensor_utils.h"
#include "paddle/fluid/framework/lod_tensor.h"

template <typename T>
paddle::Tensor InitCPUTensorForTest() {
C
Chen Weihang 已提交
23
  std::vector<int64_t> tensor_shape{5, 5};
24 25 26 27
  auto t1 = paddle::Tensor(paddle::PlaceType::kCPU);
  t1.reshape(tensor_shape);
  auto* p_data_ptr = t1.mutable_data<T>(paddle::PlaceType::kCPU);
  for (int64_t i = 0; i < t1.size(); i++) {
28
    p_data_ptr[i] = T(5);
29 30 31 32 33 34 35 36 37 38
  }
  return t1;
}

template <typename T>
void TestCopyTensor() {
  auto t1 = InitCPUTensorForTest<T>();
  auto t1_cpu_cp = t1.template copy_to<T>(paddle::PlaceType::kCPU);
  CHECK((paddle::PlaceType::kCPU == t1_cpu_cp.place()));
  for (int64_t i = 0; i < t1.size(); i++) {
39
    CHECK_EQ(t1_cpu_cp.template data<T>()[i], T(5));
40
  }
41
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
42 43 44 45 46 47
  VLOG(2) << "Do GPU copy test";
  auto t1_gpu_cp = t1_cpu_cp.template copy_to<T>(paddle::PlaceType::kGPU);
  CHECK((paddle::PlaceType::kGPU == t1_gpu_cp.place()));
  auto t1_gpu_cp_cp = t1_gpu_cp.template copy_to<T>(paddle::PlaceType::kGPU);
  CHECK((paddle::PlaceType::kGPU == t1_gpu_cp_cp.place()));
  auto t1_gpu_cp_cp_cpu =
48 49 50 51 52
      t1_gpu_cp_cp.template copy_to<T>(paddle::PlaceType::kCPU);
  CHECK((paddle::PlaceType::kCPU == t1_gpu_cp_cp_cpu.place()));
  for (int64_t i = 0; i < t1.size(); i++) {
    CHECK_EQ(t1_gpu_cp_cp_cpu.template data<T>()[i], T(5));
  }
53 54 55 56
#endif
}

void TestAPIPlace() {
C
Chen Weihang 已提交
57
  std::vector<int64_t> tensor_shape = {5, 5};
58
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
59 60 61 62 63 64 65 66 67 68 69 70
  auto t1 = paddle::Tensor(paddle::PlaceType::kGPU);
  t1.reshape(tensor_shape);
  t1.mutable_data<float>();
  CHECK((paddle::PlaceType::kGPU == t1.place()));
#endif
  auto t2 = paddle::Tensor(paddle::PlaceType::kCPU);
  t2.reshape(tensor_shape);
  t2.mutable_data<float>();
  CHECK((paddle::PlaceType::kCPU == t2.place()));
}

void TestAPISizeAndShape() {
C
Chen Weihang 已提交
71
  std::vector<int64_t> tensor_shape = {5, 5};
72 73 74 75 76 77
  auto t1 = paddle::Tensor(paddle::PlaceType::kCPU);
  t1.reshape(tensor_shape);
  CHECK_EQ(t1.size(), 25);
  CHECK(t1.shape() == tensor_shape);
}

H
Hao Lin 已提交
78 79 80 81 82
void TestAPISlice() {
  std::vector<int64_t> tensor_shape_origin1 = {5, 5};
  std::vector<int64_t> tensor_shape_sub1 = {3, 5};
  std::vector<int64_t> tensor_shape_origin2 = {5, 5, 5};
  std::vector<int64_t> tensor_shape_sub2 = {1, 5, 5};
83
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
H
Hao Lin 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  auto t1 = paddle::Tensor(paddle::PlaceType::kGPU, tensor_shape_origin1);
  t1.mutable_data<float>();
  CHECK(t1.slice(0, 5).shape() == tensor_shape_origin1);
  CHECK(t1.slice(0, 3).shape() == tensor_shape_sub1);
  auto t2 = paddle::Tensor(paddle::PlaceType::kGPU, tensor_shape_origin2);
  t2.mutable_data<float>();
  CHECK(t2.slice(4, 5).shape() == tensor_shape_sub2);
#endif
  auto t3 = paddle::Tensor(paddle::PlaceType::kCPU, tensor_shape_origin1);
  t3.mutable_data<float>();
  CHECK(t3.slice(0, 5).shape() == tensor_shape_origin1);
  CHECK(t3.slice(0, 3).shape() == tensor_shape_sub1);
  auto t4 = paddle::Tensor(paddle::PlaceType::kCPU, tensor_shape_origin2);
  t4.mutable_data<float>();
  CHECK(t4.slice(4, 5).shape() == tensor_shape_sub2);

  // Test writing function for sliced tensor
  auto t = InitCPUTensorForTest<float>();
  auto t_sliced = t.slice(0, 1);
  auto* t_sliced_data_ptr = t_sliced.mutable_data<float>();
  for (int64_t i = 0; i < t_sliced.size(); i++) {
    t_sliced_data_ptr[i] += static_cast<float>(5);
  }
  auto* t_data_ptr = t.mutable_data<float>();
  for (int64_t i = 0; i < t_sliced.size(); i++) {
    CHECK_EQ(t_data_ptr[i], static_cast<float>(10));
  }
}

113 114
template <typename T>
paddle::DataType TestDtype() {
C
Chen Weihang 已提交
115
  std::vector<int64_t> tensor_shape = {5, 5};
116 117 118 119 120 121 122 123
  auto t1 = paddle::Tensor(paddle::PlaceType::kCPU);
  t1.reshape(tensor_shape);
  t1.template mutable_data<T>();
  return t1.type();
}

template <typename T>
void TestCast(paddle::DataType data_type) {
C
Chen Weihang 已提交
124
  std::vector<int64_t> tensor_shape = {5, 5};
125 126 127 128
  auto t1 = paddle::Tensor(paddle::PlaceType::kCPU);
  t1.reshape(tensor_shape);
  t1.template mutable_data<T>();
  auto t2 = t1.cast(data_type);
129
  CHECK(t2.type() == data_type);
130
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
131 132 133 134 135 136
  auto tg1 = paddle::Tensor(paddle::PlaceType::kGPU);
  tg1.reshape(tensor_shape);
  tg1.template mutable_data<T>();
  auto tg2 = tg1.cast(data_type);
  CHECK(tg2.type() == data_type);
#endif
137 138 139 140 141 142 143
}

void GroupTestCopy() {
  VLOG(2) << "Float cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<float>();
  VLOG(2) << "Double cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<double>();
144
  VLOG(2) << "int cpu-cpu-gpu-gpu-cpu";
145 146 147 148 149 150 151 152 153
  TestCopyTensor<int>();
  VLOG(2) << "int64 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<int64_t>();
  VLOG(2) << "int16 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<int16_t>();
  VLOG(2) << "int8 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<int8_t>();
  VLOG(2) << "uint8 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<uint8_t>();
154
  VLOG(2) << "complex<float> cpu-cpu-gpu-gpu-cpu";
155
  TestCopyTensor<paddle::complex64>();
156
  VLOG(2) << "complex<double> cpu-cpu-gpu-gpu-cpu";
157
  TestCopyTensor<paddle::complex128>();
158 159
  VLOG(2) << "Fp16 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<paddle::float16>();
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
}

void GroupTestCast() {
  VLOG(2) << "int cast";
  TestCast<int>(paddle::DataType::FLOAT32);
  VLOG(2) << "int32 cast";
  TestCast<int32_t>(paddle::DataType::FLOAT32);
  VLOG(2) << "int64 cast";
  TestCast<int64_t>(paddle::DataType::FLOAT32);
  VLOG(2) << "double cast";
  TestCast<double>(paddle::DataType::FLOAT32);
  VLOG(2) << "bool cast";
  TestCast<bool>(paddle::DataType::FLOAT32);
  VLOG(2) << "uint8 cast";
  TestCast<uint8_t>(paddle::DataType::FLOAT32);
  VLOG(2) << "float cast";
  TestCast<float>(paddle::DataType::FLOAT32);
177
  VLOG(2) << "complex<float> cast";
178
  TestCast<paddle::complex64>(paddle::DataType::FLOAT32);
179
  VLOG(2) << "complex<double> cast";
180
  TestCast<paddle::complex128>(paddle::DataType::FLOAT32);
181 182
  VLOG(2) << "float16 cast";
  TestCast<paddle::float16>(paddle::DataType::FLOAT16);
183 184 185 186 187 188 189 190 191 192
}

void GroupTestDtype() {
  CHECK(TestDtype<float>() == paddle::DataType::FLOAT32);
  CHECK(TestDtype<double>() == paddle::DataType::FLOAT64);
  CHECK(TestDtype<int>() == paddle::DataType::INT32);
  CHECK(TestDtype<int64_t>() == paddle::DataType::INT64);
  CHECK(TestDtype<int16_t>() == paddle::DataType::INT16);
  CHECK(TestDtype<int8_t>() == paddle::DataType::INT8);
  CHECK(TestDtype<uint8_t>() == paddle::DataType::UINT8);
193 194
  CHECK(TestDtype<paddle::complex64>() == paddle::DataType::COMPLEX64);
  CHECK(TestDtype<paddle::complex128>() == paddle::DataType::COMPLEX128);
195
  CHECK(TestDtype<paddle::float16>() == paddle::DataType::FLOAT16);
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
}

void GroupTestDtypeConvert() {
  // enum -> proto
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::FLOAT64) ==
        paddle::framework::proto::VarType::FP64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::FLOAT32) ==
        paddle::framework::proto::VarType::FP32);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::UINT8) ==
        paddle::framework::proto::VarType::UINT8);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::INT8) == paddle::framework::proto::VarType::INT8);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::INT32) ==
        paddle::framework::proto::VarType::INT32);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::INT64) ==
        paddle::framework::proto::VarType::INT64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::INT16) ==
        paddle::framework::proto::VarType::INT16);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::BOOL) == paddle::framework::proto::VarType::BOOL);
222 223 224 225 226 227
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::COMPLEX64) ==
        paddle::framework::proto::VarType::COMPLEX64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::COMPLEX128) ==
        paddle::framework::proto::VarType::COMPLEX128);
228 229 230
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::FLOAT16) ==
        paddle::framework::proto::VarType::FP16);
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
  // proto -> enum
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::FP64) ==
        paddle::DataType::FLOAT64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::FP32) ==
        paddle::DataType::FLOAT32);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::INT64) ==
        paddle::DataType::INT64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::INT32) ==
        paddle::DataType::INT32);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::INT8) == paddle::DataType::INT8);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::UINT8) ==
        paddle::DataType::UINT8);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::INT16) ==
        paddle::DataType::INT16);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::BOOL) == paddle::DataType::BOOL);
254 255 256 257 258 259
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::COMPLEX64) ==
        paddle::DataType::COMPLEX64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::COMPLEX128) ==
        paddle::DataType::COMPLEX128);
260 261 262
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::FP16) ==
        paddle::DataType::FLOAT16);
263 264
}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
void TestInitilized() {
  paddle::Tensor test_tensor(paddle::PlaceType::kCPU);
  CHECK(test_tensor.is_initialized() == false);
  test_tensor.reshape({1, 1});
  test_tensor.mutable_data<float>();
  CHECK(test_tensor.is_initialized() == true);
  float* tensor_data = test_tensor.data<float>();
  for (int i = 0; i < test_tensor.size(); i++) {
    tensor_data[i] = 0.5;
  }
  for (int i = 0; i < test_tensor.size(); i++) {
    CHECK(tensor_data[i] == 0.5);
  }
}

280 281 282 283 284 285 286 287 288
TEST(CustomTensor, copyTest) {
  VLOG(2) << "TestCopy";
  GroupTestCopy();
  VLOG(2) << "TestDtype";
  GroupTestDtype();
  VLOG(2) << "TestShape";
  TestAPISizeAndShape();
  VLOG(2) << "TestPlace";
  TestAPIPlace();
H
Hao Lin 已提交
289 290
  VLOG(2) << "TestSlice";
  TestAPISlice();
291 292 293 294
  VLOG(2) << "TestCast";
  GroupTestCast();
  VLOG(2) << "TestDtypeConvert";
  GroupTestDtypeConvert();
295 296
  VLOG(2) << "TestInitilized";
  TestInitilized();
297
}