reduce.h 42.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17 18 19
// CUDA and HIP use same api
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <vector>

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif

#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
37
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
38
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
39
#include "paddle/fluid/platform/fast_divmod.h"
40
#include "paddle/fluid/string/string_helper.h"
41
#include "paddle/pten/api/ext/dispatch.h"
42
#include "paddle/pten/backends/gpu/gpu_context.h"
43
#include "paddle/pten/core/dense_tensor.h"
44 45
#include "paddle/pten/core/enforce.h"
#include "paddle/pten/core/utils/array.h"
46
#include "paddle/pten/kernels/funcs/elementwise_base.h"
47
#include "paddle/pten/kernels/primitive/kernel_primitives.h"
48

49 50 51 52
// Reduce split or not, Whether to use ReduceHigherDim
#define REDUCE_SPLIT_BOUNDARY 512
#define REDUCE_VEC_SIZE 4

53
namespace kps = pten::kps;
54

55 56 57
namespace pten {
namespace kernels {

58 59 60 61 62 63 64 65 66 67 68 69 70 71
namespace details {

static inline int GetLastPow2(int n) {
  n |= (n >> 1);
  n |= (n >> 2);
  n |= (n >> 4);
  n |= (n >> 8);
  n |= (n >> 16);
  return std::max(1, n - (n >> 1));
}

static inline int64_t AlignUp(int64_t a, int64_t b) { return (a + b - 1) / b; }

// get strides of x_dim, reduce_dim and left_dim for reduceLastDim and reduceAny
72 73
static inline std::vector<int> GetDimStrides(const std::vector<int>& dims,
                                             const std::vector<int>& idx) {
74
  int n = static_cast<int>(idx.size());
75 76
  if (n == 0) return std::vector<int>();
  std::vector<int> strides(n);
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
  strides.back() = 1;
  for (int i = n - 2; i >= 0; --i) {
    strides[i] = strides[i + 1] * dims[idx[i + 1]];
  }
  return strides;
}

// get blockDim for reduceLastDim and reduceAny
static inline int GetBlockDim(int block_dim) {
  return block_dim >= kps::details::kReduceMaxThread
             ? kps::details::kReduceMaxThread
             : GetLastPow2(block_dim);
}

// check reduce rand is valid
static inline void CheckReduceRank(int reduce_rank, int rank) {
  if (rank % 2 == 0) {
    PADDLE_ENFORCE_EQ(reduce_rank,
                      rank / 2,
96
                      pten::errors::InvalidArgument(
97 98 99 100 101 102 103 104 105 106 107
                          "ReduceOp: invalid reduce rank. When rank = %d, "
                          "reduce_rank must be %d, but got %d.",
                          rank,
                          rank / 2,
                          reduce_rank));
  } else {
    auto lower_rank = (rank - 1) / 2;
    auto upper_rank = (rank + 1) / 2;
    PADDLE_ENFORCE_EQ(
        reduce_rank == lower_rank || reduce_rank == upper_rank,
        true,
108
        pten::errors::InvalidArgument(
109 110 111 112 113 114 115 116 117 118 119
            "ReduceOp: invalid reduce rank. When rank = %d, reduce_rank "
            "must be %d or %d, but got %d.",
            rank,
            lower_rank,
            upper_rank,
            reduce_rank));
  }
}

// convert dims from vector to array
template <typename T, size_t ElementCount, typename VectorLikeType>
120
static inline pten::framework::Array<T, ElementCount> VectorToArray(
121 122 123
    const VectorLikeType& vec) {
  PADDLE_ENFORCE_LE(vec.size(),
                    ElementCount,
124
                    pten::errors::InvalidArgument(
125 126 127 128 129
                        "Cub reduce Array: size not match. Received "
                        "vec.size() %d > ElementCount %d.",
                        vec.size(),
                        ElementCount));
  size_t n = static_cast<size_t>(vec.size());
130
  pten::framework::Array<T, ElementCount> ret;
131 132 133 134 135 136
  for (size_t i = 0; i < n; ++i) {
    ret[i] = vec[i];
  }
  return ret;
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150
static inline std::vector<int> GetReduceDim(const std::vector<int64_t>& dims,
                                            int dim_size,
                                            bool reduce_all) {
  std::vector<int> reduce_dims;
  if (reduce_all) {
    reduce_dims.resize(dim_size);
    int reduce_size = reduce_dims.size();
    for (int i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = i;
    }
  } else {
    for (auto e : dims) {
      PADDLE_ENFORCE_LT(e,
                        dim_size,
151
                        pten::errors::InvalidArgument(
152 153 154 155 156 157 158 159 160 161
                            "ReduceOp: invalid axis, when x_dims is %d, "
                            "axis[i] should less than x_dims, but got %d.",
                            dim_size,
                            e));
      reduce_dims.push_back(e >= 0 ? e : e + dim_size);
    }
  }
  return reduce_dims;
}

162 163
}  // namespace details

164
constexpr int kMaxRank = pten::framework::DDim::kMaxRank;
165 166 167 168 169 170 171 172 173

enum ReduceType {
  kReduceLastDim = 0x01,    // when reduce_dim[0] == x_dim.size() - 1;
  kReduceHigherDim = 0x02,  // ReduceFirstDim or reduceSecondDim
  kReduceAny = 0x03,        // when reduce_dim.size() > 1
};

struct IndexCalculator {
  IndexCalculator(int dim,
174 175 176
                  const std::vector<int>& cal_dims,
                  const std::vector<int>& cal_strides,
                  const std::vector<int>& full_strides)
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
      : dim(dim) {
    dims = details::VectorToArray<int, kMaxRank>(cal_dims);
    strides = details::VectorToArray<int, kMaxRank>(full_strides);
    std::vector<paddle::platform::FastDivMod> cal_divmoders;
    // fast divmod
    for (auto i : cal_strides) {
      cal_divmoders.push_back(paddle::platform::FastDivMod(i));
    }
    divmoders = details::VectorToArray<paddle::platform::FastDivMod, kMaxRank>(
        cal_divmoders);
  }

  __device__ inline int operator()(int offset) const {
    int index = 0;
#pragma unroll
    for (int i = 0; i < kMaxRank; ++i) {
      if (i == dim) {
        break;
      }
      auto divmod = divmoders[i].Divmod(offset);
      index += (divmod.val[0] * strides[dims[i]]);
      offset = divmod.val[1];
    }
    return index;
  }

  int dim;
204 205 206
  pten::framework::Array<int, kMaxRank> dims;
  pten::framework::Array<int, kMaxRank> strides;
  pten::framework::Array<paddle::platform::FastDivMod, kMaxRank> divmoders;
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
};

template <bool ReduceLastDim = false>
struct ReduceIndexMapping {
  const kps::DimConfig dim;
  HOSTDEVICE explicit ReduceIndexMapping(const kps::DimConfig& dims)
      : dim(dims) {}

  __device__ __forceinline__ int BlockIdX() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return (cluster_id() / dim.split_num_x % dim.split_num_y);
    } else {
      return cluster_id() % dim.split_num_x;
    }
#else
    return blockIdx.x;
#endif
  }

  __device__ __forceinline__ int BlockIdY() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return (cluster_id() % dim.split_num_x);
    } else {
      return (cluster_id() / dim.split_num_x % dim.split_num_y);
    }
#else
    return blockIdx.y;
#endif
  }

  __device__ __forceinline__ int BlockDimX() {
#ifdef PADDLE_WITH_XPU2
    return dim.deal_size_x;
#else
    return blockDim.x;
#endif
  }

  __device__ __forceinline__ int BlockDimY() {
#ifdef PADDLE_WITH_XPU2
    return dim.deal_size_y;
#else
    return blockDim.y;
#endif
  }

  __device__ __forceinline__ int GridDimX() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return dim.split_num_y;
    } else {
      return dim.split_num_x;
    }
#else
    return gridDim.x;
#endif
  }

  __device__ __forceinline__ int GridDimY() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return dim.split_num_x;
    } else {
      return dim.split_num_y;
    }
#else
    return gridDim.y;
#endif
  }

  __device__ __forceinline__ int GetLoopSize() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return dim.deal_size_y;
    } else {
      return dim.deal_size_x;
    }
#else
    return 1;
#endif
  }
};

// when reduce_type == kReduceLastDim this struct will be used
// for higher performance
struct OneDimIndexCal {
  explicit OneDimIndexCal(int num) : stride(num) {}

  __device__ inline int operator()(int index) const { return index * stride; }
  int stride;
};

// reduce config
template <typename Ty>
struct ReduceConfig {
304 305
  ReduceConfig(const std::vector<int>& origin_reduce_dims,
               const std::vector<int>& origin_x_dim)
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
      : reduce_dims_origin(origin_reduce_dims), x_dim(origin_x_dim) {}

  // get the parameters of reduceKernel
  void Run() {
    // step1: update the reduce_dim left_dim and x_dim
    SetReduceDim();

    // step2: get the strides of dim for reduceAny and reduceLastDim
    SetStrides();

    // step3: get the type of reduce
    SetReduceType();

    // step4: set the block and grid for launch kernel
    SetBlockDim();
  }

  // when should_reduce_again is true, we need malloc temp space for temp data
  void SetOutputData(Ty* y_data,
                     const paddle::platform::Place& place,
                     pten::DenseTensor* tmp) {
    if (should_reduce_again) {
328
      tmp->ResizeAndAllocate(pten::framework::make_ddim(
329
          {static_cast<int64_t>(left_num * grid.z * grid.y * sizeof(Ty))}));
330
      output_data = tmp->mutable_data<Ty>(place);
331 332 333 334 335 336 337 338 339 340
    } else {
      output_data = y_data;
    }
  }

 private:
  // set reduce_dim, left_dim and update x_dim
  // eg: x_dim = [2, 4, 6] origin_reduce_dims = [0, 1]
  //     --SetReduceDim--> x_dim = [8,6], reduce_dim = [0], left_dim = [1]
  void SetReduceDim() {
341
    std::set<int> reduce_set;
342 343 344 345 346
    for (auto e : reduce_dims_origin) {
      auto pos = e >= 0 ? e : e + x_dim.size();
      reduce_set.insert(pos);
    }

347
    std::vector<int> reduce_dim_temp(reduce_set.begin(), reduce_set.end());
348 349 350
    std::sort(reduce_dim_temp.begin(), reduce_dim_temp.end());

    // update reduce_dim and x_dim
351
    std::vector<int> x_new_dim;
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

    reduce_dim.push_back(reduce_dim_temp[0]);
    x_new_dim.push_back(x_dim[0]);

    int idx_reduce = 1;
    int num = 0;

    if (reduce_dim_temp.size() > 1) {
      for (int i = 1; i < x_dim.size(); i++) {
        if ((idx_reduce < reduce_dim_temp.size()) &&
            (i == reduce_dim_temp[idx_reduce])) {
          int result =
              reduce_dim_temp[idx_reduce] - reduce_dim[reduce_dim.size() - 1];
          bool is_equal = ((result - num) == 1);
          if (is_equal) {
            x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
            num++;
          } else {
            reduce_dim.push_back(reduce_dim_temp[idx_reduce] - num);
            x_new_dim.push_back(x_dim[i]);
          }
          idx_reduce++;
        } else {
          x_new_dim.push_back(x_dim[i]);
        }
      }
    } else {
      x_new_dim = x_dim;
    }

    // update x_dim
    x_dim = x_new_dim;
384
    std::vector<int>().swap(x_new_dim);
385

386
    std::vector<int> reduce_dim_new;
387 388 389 390 391
    int is_reduced = 0;
    for (auto e : reduce_dim) {
      is_reduced |= 1 << e;
    }

392
    std::vector<int>().swap(reduce_dim);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

    for (int i = 0; i < x_dim.size(); i++) {
      if ((i == 0) || (((is_reduced >> i) ^ (is_reduced >> (i - 1))) & 1)) {
        x_new_dim.push_back(x_dim[i]);
        if ((is_reduced >> i) & 1)
          reduce_dim_new.push_back(x_new_dim.size() - 1);
      } else {
        x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
      }
    }

    x_dim = x_new_dim;
    reduce_dim = reduce_dim_new;

    int x_rank = static_cast<int>(x_dim.size());
    std::set<int> left_set;

    for (int i = 0; i < x_rank; ++i) {
      left_set.insert(i);
    }

    for (auto e : reduce_dim) {
      left_set.erase(e);
    }

    left_dim.assign(left_set.begin(), left_set.end());

    // if the last dim gets involved in reduction
    reduce_last_dim = (reduce_dim.back() == x_dim.size() - 1);
  }

  // set x_strides, reduce_strides, left_strides for reduceLastDim and reduceAny
  // eg: x_dim = [8, 6], reduce_dim = [0], left_dim = [1]
  //     --SetStrides--> x_strides= [6,1], reduce_strides = [1],
  //     left_strides = [1]
  void SetStrides() {
429
    std::vector<int> idx_dim;
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    for (int i = 0; i < x_dim.size(); i++) {
      idx_dim.push_back(i);
    }

    x_strides = details::GetDimStrides(x_dim, idx_dim);
    reduce_strides = details::GetDimStrides(x_dim, reduce_dim);
    left_strides = details::GetDimStrides(x_dim, left_dim);
    reduce_num = reduce_strides[0] * x_dim[reduce_dim[0]];

    left_num = 1;
    if (left_dim.size()) {
      left_num = left_strides[0] * x_dim[left_dim[0]];
    }
  }

  // get the reduceType
  // eg: x_dim = [8, 6] reduce_dim = [0] --> ReduceHigherDim -->reduceFirstDim
  //     x_dim = [8, 6] reduce_dim = [1] --> reduceLastDim
  //     x_dim = [8] reduce_dim = [0] --> reduceAll
  //     x_dim = [8, 6, 4, 2] reduce_dim = [0, 2] --> reduceAny
  void SetReduceType() {
    int rank = x_dim.size();
    int reduce_rank = reduce_dim.size();
    bool is_last_dim =
        (rank == 2) && (reduce_rank == 1) && (reduce_dim[0] == 1);
    if (rank == reduce_rank || is_last_dim) {
      reduce_type = static_cast<int>(ReduceType::kReduceLastDim);
    } else if (reduce_rank == 1) {
// ReduceFirstDim and reduceSecondDim
#ifdef PADDLE_WITH_XPU2
      if (reduce_dim[0] == 0) {
        reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
      } else {
        reduce_type = static_cast<int>(ReduceType::kReduceAny);
      }
#else
      reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
#endif
    } else {
      reduce_type = static_cast<int>(ReduceType::kReduceAny);
    }
  }

  void SetBlockDimForReduceAny(dim3* block_dim, dim3* grid_dim) {
    constexpr int min_reduce_num_per_thread = 16;
    constexpr int max_reduce_num_per_thread = 256;
    constexpr int max_num_threads = kps::details::kReduceMaxThread;

    // set block size.
    // 1. If reduce_last_dim == true, all the threads whose threadIdx.y are same
    //    will process the reduction for one output.
    //    The number of output for one block is blockDim.y;
    // 2. If reduce_last_dim == false, different threadIdx.x will process
    //    different reduction and gets the output separately. If it is
    //    necessary, it should reduce in block y.
    //    The number of output for one block is blockDim.x;
    int block_x, block_y;
    int grid_num, reduce_num_per_thread;
    if (reduce_last_dim) {
      block_x = details::GetBlockDim(reduce_num);
      block_y = details::GetBlockDim(left_num);
      block_dim->x = block_x;
      block_dim->y =
          std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
      grid_num = details::AlignUp(left_num, block_dim->y);
      reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->x);
    } else {
      block_x = details::GetBlockDim(left_num);
      block_y = details::GetBlockDim(reduce_num);
      block_dim->x = std::min(block_x, 32);
      block_dim->y =
          std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
      block_dim->x =
          std::min(block_x, static_cast<int>(max_num_threads / block_dim->y));
      grid_num = details::AlignUp(left_num, block_dim->x);
      reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->y);
    }
    int device_id = paddle::platform::GetCurrentDeviceId();
508
    int max_mp = paddle::platform::GetGPUMultiProcessors(device_id);
509
    int max_threads_per_mp =
510
        paddle::platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
    int max_threads = max_threads_per_mp * max_mp;
    int num_threads = block_dim->x * block_dim->y;
    int max_num_blocks = max_threads / num_threads;

    // set grid size.
    // Whether to set grid.y larger than 1, there are 3 following rules:
    // 1. The number that each thread process should no less than
    //    min_reduce_num_per_threadbut no more than max_reduce_num_per_thread;
    // 2. It should maximize the utilization of SM.
    // So we choose the minimum between input_split_num_1 and input_split_num_3
    // to make each thread process as mush data as possible. Meanwhile,
    // the number cannot be larger than max_reduce_num_per_thread, so we
    // choose the maximum between the result above and input_split_num_2.
    int input_split_num_1 =
        details::AlignUp(reduce_num_per_thread, min_reduce_num_per_thread);
    int input_split_num_2 =
        details::AlignUp(reduce_num_per_thread, max_reduce_num_per_thread);
    int input_split_num_3 = details::AlignUp(max_num_blocks, grid_num);

    grid_dim->x = grid_num;
    grid_dim->y = std::max(std::min(input_split_num_1, input_split_num_3),
                           input_split_num_2);
    // if grid.y > 1, we need launch reduce kernel again.
    if (grid_dim->y > 1) {
      should_reduce_again = true;
    }
  }

  // set block and grid for launch kernel
  // for ReduceHigherDim: if block is enough -> splite reduce_num
  //                     else init block(32, 1) grid(block_num, 1)
  // for others: block(block_num, 1) , grid(left_num, 1)
  void SetBlockDimForHigher(dim3* block_dim, dim3* grid_dim) {
    int last_dim_num = x_dim.back();
    // update left_num
    int grid_z = left_num / last_dim_num;
    left_num = last_dim_num;
    grid_dim->z = grid_z;
    int device_id = paddle::platform::GetCurrentDeviceId();
550
    int max_mp = paddle::platform::GetGPUMultiProcessors(device_id);
551
    int max_threads_per_mp =
552
        paddle::platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    int max_threads = max_threads_per_mp * max_mp;
    // init
    int num_block = (max_threads / left_num);
    block_dim->x = details::GetBlockDim(left_num);
    grid_dim->x = details::AlignUp(left_num, block_dim->x);
    blocking_size = reduce_num;

    if (num_block > 1 && reduce_num >= REDUCE_SPLIT_BOUNDARY) {
      blocking_size = details::GetLastPow2(reduce_num / num_block);
      if (blocking_size <= 1) {
        blocking_size = details::GetLastPow2(sqrt(reduce_num));
      } else if (blocking_size * 2 < reduce_num) {
        blocking_size *= 2;
      }
      should_reduce_again = true;
      grid_dim->y = details::AlignUp(reduce_num, blocking_size);
    }
  }

  void SetBlockDim() {
    // init
    int block_num = details::GetBlockDim(reduce_num);
    should_reduce_again = false;
    dim3 block_dim(block_num, 1, 1);
    dim3 grid_dim(left_num, 1, 1);
    blocking_size = reduce_num;
#ifdef PADDLE_WITH_XPU2
    if (reduce_last_dim) {
      block_dim.x = 128;
      block_dim.y = reduce_num;
      grid_dim.x = 8;
      grid_dim.y = 1;
    } else {
      block_dim.x = 128;
      block_dim.y = left_num;
      grid_dim.x = 8;
      grid_dim.y = 1;
    }
#else
    if (reduce_type == ReduceType::kReduceHigherDim) {
      SetBlockDimForHigher(&block_dim, &grid_dim);
    } else {
      SetBlockDimForReduceAny(&block_dim, &grid_dim);
    }
#endif

    block = block_dim;
    grid = grid_dim;
  }

 public:
604 605 606 607 608 609 610
  std::vector<int> reduce_dims_origin;
  std::vector<int> reduce_dim;
  std::vector<int> x_dim;
  std::vector<int> left_dim;
  std::vector<int> x_strides;
  std::vector<int> left_strides;
  std::vector<int> reduce_strides;
611 612 613 614 615 616 617 618 619 620 621 622 623 624

  int reduce_type;
  int reduce_num;
  int left_num;
  int blocking_size;
  bool should_reduce_again;
  bool reduce_last_dim;

  Ty* output_data;

  dim3 block;
  dim3 grid;
};

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
// when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
// when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
// function will be used
template <typename Tx,
          typename Ty,
          typename MPType,
          typename ReduceOp,
          typename TransformOp,
          typename Calculator>
__global__ void ReduceAnyKernel(const Tx* x,
                                Ty* y,
                                ReduceOp reducer,
                                TransformOp transformer,
                                MPType init,
                                int reduce_num,
                                int left_num,
                                bool reduce_last_dim,
                                const Calculator reduce_index_calculator,
                                const Calculator left_index_calculator,
                                const kps::DimConfig dim) {
  int input_idx, left_idx, stride;
  int block_size = 0;
  bool need_store = true;
  int loop_left = 0;
  int tid = 0;
  // the last dim gets involved in reduction
  int store_offset = 0;
  int stride_left = 0;
  if (reduce_last_dim) {
    auto block = ReduceIndexMapping<true>(dim);
    input_idx = block.BlockIdY() * block.BlockDimX();
    left_idx = block.BlockIdX() * block.BlockDimY() + THREAD_ID_Y;
    stride = block.GridDimY() * block.BlockDimX();
    block_size = block.BlockDimX();
    need_store = (THREAD_ID_X == 0) && (left_idx < left_num);
    store_offset = block.BlockIdY() * left_num + left_idx;
    loop_left = min(block.GetLoopSize(), left_num - left_idx);
    stride_left = 1;
    tid = threadIdx.x;
  } else {
    auto block = ReduceIndexMapping<false>(dim);
    input_idx = block.BlockIdY() * block.BlockDimY();
    left_idx = block.BlockIdX() * block.BlockDimX() + THREAD_ID_X;
    stride = block.GridDimY() * block.BlockDimY();
    block_size = block.BlockDimY();
    need_store = (THREAD_ID_Y == 0) && (left_idx < left_num);
    loop_left = min(block.GetLoopSize(), left_num - left_idx);
    stride_left = block.BlockDimX() * block.GridDimX();
    store_offset = block.BlockIdY() * left_num + left_idx;
    tid = threadIdx.y;
  }
  // calculate the offset, means the addr where each thread really start.
  // 1. reduce for each thread
  MPType input_compute[REDUCE_VEC_SIZE];
  Tx input_reg[REDUCE_VEC_SIZE];
  for (int i = 0; i < loop_left; i += stride_left) {
    int input_offset = left_index_calculator(left_idx + i);
    const Tx* input = x + input_offset;
    MPType reduce_var = init;
    // load REDUCE_VEC_SIZE data once, and then compute
    int bound = reduce_num - (REDUCE_VEC_SIZE - 1) * stride;
    for (; input_idx + block_size < bound;
         input_idx += REDUCE_VEC_SIZE * stride) {
      kps::ReadDataReduce<Tx,
                          Tx,
                          1,
                          REDUCE_VEC_SIZE,
                          1,
                          1,
                          Calculator,
                          kps::IdentityFunctor<Tx>,
                          false>(&input_reg[0],
                                 input,
                                 input_idx,
                                 reduce_index_calculator,
                                 1,
                                 reduce_num,
                                 1,
                                 stride,
                                 kps::IdentityFunctor<Tx>(),
                                 reduce_last_dim);
      kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
          &input_compute[0], &input_reg[0], transformer);
      kps::Reduce<MPType,
                  REDUCE_VEC_SIZE,
                  1,
                  1,
                  ReduceOp,
                  kps::details::ReduceMode::kLocalMode>(
          &reduce_var, &input_compute[0], reducer, reduce_last_dim);
    }

    kps::Init<MPType, REDUCE_VEC_SIZE>(&input_compute[0], init);
    kps::ReadDataReduce<Tx,
                        MPType,
                        1,
                        REDUCE_VEC_SIZE,
                        1,
                        1,
                        Calculator,
                        TransformOp,
                        true>(&input_compute[0],
                              input,
                              input_idx,
                              reduce_index_calculator,
                              1,
                              reduce_num - input_idx,
                              1,
                              stride,
                              transformer,
                              reduce_last_dim);
    kps::Reduce<MPType,
                REDUCE_VEC_SIZE,
                1,
                1,
                ReduceOp,
                kps::details::ReduceMode::kLocalMode>(
        &reduce_var, &input_compute[0], reducer, reduce_last_dim);

    kps::Reduce<MPType, 1, 1, 1, ReduceOp, kps::details::kGlobalMode>(
        &reduce_var, &reduce_var, reducer, reduce_last_dim);
    if (need_store) {
      y[store_offset + i] = static_cast<Ty>(reduce_var);
    }
  }
}

template <typename Tx,
          typename Ty,
          typename MPType,
          typename ReduceOp,
          typename TransformOp>
__global__ void ReduceHigherDimKernel(const Tx* x,
                                      Ty* y,
                                      ReduceOp reducer,
                                      TransformOp transformer,
                                      MPType init,
                                      int reduce_num,
                                      int left_num,
                                      int blocking_size,
                                      const kps::DimConfig dim) {
  // when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
  // function will be used
  auto block = ReduceIndexMapping<false>(dim);
  int idy = block.BlockIdY() * blocking_size;
  int idx = block.BlockIdX() * block.BlockDimX();
  int idz = BLOCK_ID_Z * left_num;
  int stride = dim.split_num_x * dim.deal_size_x;
  int size = left_num - dim.rem_x;
  int loop_size = min(reduce_num - idy, blocking_size);
  int store_offset = block.BlockIdY() * left_num + idz * block.GridDimY();
  int block_offset = idy * left_num + idz * reduce_num;
  const Tx* input = x + block_offset;
  Tx reduce_input;
  for (; idx < size; idx += stride) {
    MPType reduce_var = init;
    MPType reduce_compute = init;
    for (int loop_idx = 0; loop_idx < loop_size; ++loop_idx) {
      kps::ReadData<Tx, Tx, 1, 1, 1, false>(&reduce_input,
                                            input + loop_idx * left_num + idx,
                                            block.BlockDimX(),
                                            1,
                                            1,
                                            left_num);
      kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
          &reduce_compute, &reduce_input, transformer);
      kps::Reduce<MPType,
                  1,
                  1,
                  1,
                  ReduceOp,
                  kps::details::ReduceMode::kLocalMode>(
          &reduce_var, &reduce_compute, reducer, false);
    }
    Ty result = static_cast<Ty>(reduce_var);
    kps::WriteData<Ty, 1, 1, 1, false>(
        y + store_offset + idx, &result, block.BlockDimX());
  }

  if (idx < left_num) {
    MPType reduce_var = init;
    MPType reduce_compute = init;
    for (int loop_idx = 0; loop_idx < loop_size; ++loop_idx) {
      kps::ReadData<Tx, Tx, 1, 1, 1, true>(&reduce_input,
                                           input + loop_idx * left_num + idx,
                                           dim.rem_x,
                                           1,
                                           1,
                                           left_num);
      kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
          &reduce_compute, &reduce_input, transformer);
      kps::Reduce<MPType,
                  1,
                  1,
                  1,
                  ReduceOp,
                  kps::details::ReduceMode::kLocalMode>(
          &reduce_var, &reduce_compute, reducer, false);
    }
    Ty result = static_cast<Ty>(reduce_var);
    kps::WriteData<Ty, 1, 1, 1, true>(
        y + store_offset + idx, &result, dim.rem_x);
  }
}

template <typename Tx,
          typename Ty,
          typename MPType,
          typename ReduceOp,
          typename TransformOp>
835 836 837
static void LaunchReduceKernel(const Tx* x_data,
                               Ty* y_data,
                               const ReduceOp& reducer,
838
                               const TransformOp& transform,
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
                               MPType init,
                               gpuStream_t stream,
                               ReduceConfig<Ty> config) {
  if (config.reduce_type == kReduceLastDim) {
    int stride_reduce = 1;
    int stride_left = config.reduce_num;
    // for higher performance
    auto reduce_index_calculator = OneDimIndexCal(stride_reduce);
    auto left_index_calculator = OneDimIndexCal(stride_left);

    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.block.y,
                                        0);
    dim.SetRem(config.reduce_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU2
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
    ReduceAnyKernel<Tx,
                    Ty,
                    MPType,
                    ReduceOp,
                    TransformOp,
                    OneDimIndexCal><<<8, 128, stream>>>(x_data,
                                                        config.output_data,
                                                        reducer,
                                                        transform,
                                                        init,
                                                        config.reduce_num,
                                                        config.left_num,
                                                        config.reduce_last_dim,
                                                        reduce_index_calculator,
                                                        left_index_calculator,
                                                        dim);
874
#else
875 876 877 878 879 880
    ReduceAnyKernel<Tx,
                    Ty,
                    MPType,
                    ReduceOp,
                    TransformOp,
                    OneDimIndexCal><<<config.grid, config.block, 0, stream>>>(
881 882 883
        x_data,
        config.output_data,
        reducer,
884
        transform,
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
        init,
        config.reduce_num,
        config.left_num,
        config.reduce_last_dim,
        reduce_index_calculator,
        left_index_calculator,
        dim);
#endif

  } else {
    int reduce_rank = config.reduce_strides.size();
    int left_rank = config.left_strides.size();
    auto reduce_index_calculator = IndexCalculator(reduce_rank,
                                                   config.reduce_dim,
                                                   config.reduce_strides,
                                                   config.x_strides);
    auto left_index_calculator = IndexCalculator(
        left_rank, config.left_dim, config.left_strides, config.x_strides);

    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.block.y,
                                        0);
    dim.SetRem(config.reduce_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU2
913 914 915 916 917 918
    ReduceAnyKernel<Tx,
                    Ty,
                    MPType,
                    ReduceOp,
                    TransformOp,
                    IndexCalculator><<<8, 128, stream>>>(
919 920 921
        x_data,
        config.output_data,
        reducer,
922
        transform,
923 924 925 926 927 928 929 930
        init,
        config.reduce_num,
        config.left_num,
        config.reduce_last_dim,
        reduce_index_calculator,
        left_index_calculator,
        dim);
#else
931 932 933 934 935 936
    ReduceAnyKernel<Tx,
                    Ty,
                    MPType,
                    ReduceOp,
                    TransformOp,
                    IndexCalculator><<<config.grid, config.block, 0, stream>>>(
937 938 939
        x_data,
        config.output_data,
        reducer,
940
        transform,
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
        init,
        config.reduce_num,
        config.left_num,
        config.reduce_last_dim,
        reduce_index_calculator,
        left_index_calculator,
        dim);
#endif
  }

  if (config.should_reduce_again) {
    dim3 block;
    dim3 grid;
    if (config.reduce_last_dim) {
      block = dim3(32, 1, 1);
      grid = dim3(details::AlignUp(config.left_num, 32), 1, 1);
    } else {
      block = dim3(config.block.x, 1, 1);
      grid = dim3(config.grid.x, 1, config.grid.z);
    }

    auto last_index = OneDimIndexCal(1);
    auto first_index = OneDimIndexCal(config.left_num);
    kps::DimConfig dim =
        kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
    dim.SetRem(config.left_num % block.x, 0, 0);
#ifdef PADDLE_WITH_XPU2
968 969 970 971 972
    ReduceHigherDimKernel<Ty,
                          Ty,
                          MPType,
                          ReduceOp,
                          kps::IdentityFunctor<Ty, MPType>><<<8, 128, stream>>>(
973 974 975
        config.output_data,
        y_data,
        reducer,
976
        kps::IdentityFunctor<Ty, MPType>(),
977 978 979 980 981 982
        init,
        config.grid.y,
        config.left_num,
        config.grid.y,
        dim);
#else
983
    ReduceHigherDimKernel<
984 985 986 987 988 989 990 991
        Ty,
        Ty,
        MPType,
        ReduceOp,
        kps::IdentityFunctor<Ty, MPType>><<<grid, block, 0, stream>>>(
        config.output_data,
        y_data,
        reducer,
992
        kps::IdentityFunctor<Ty, MPType>(),
993 994 995 996 997 998 999 1000 1001
        init,
        config.grid.y,
        config.left_num,
        config.grid.y,
        dim);
#endif
  }
}

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
template <typename Tx,
          typename Ty,
          template <typename> class ReduceOp,
          typename TransformOp>
static
    typename std::enable_if<!std::is_same<Tx, paddle::platform::float16>::value,
                            void>::type
    CubTensorReduceFunctorImpl(const Tx* x_data,
                               Ty* y_data,
                               const TransformOp& transform,
                               int reduce_num,
                               const paddle::platform::Place& place,
                               gpuStream_t stream) {
  auto reducer = ReduceOp<Ty>();
  cub::TransformInputIterator<Ty, TransformOp, const Tx*> trans_x(x_data,
                                                                  transform);
  size_t temp_storage_bytes = 0;
  cub::DeviceReduce::Reduce(nullptr,
                            temp_storage_bytes,
                            trans_x,
                            y_data,
                            reduce_num,
                            reducer,
                            reducer.initial(),
                            stream);

  pten::DenseTensor tmp = pten::DenseTensor(
      pten::make_intrusive<paddle::experimental::SharedStorage>(place),
      pten::DenseTensorMeta(pten::DataType::UINT8,
1031
                            pten::framework::make_ddim(
1032 1033
                                {static_cast<int64_t>(temp_storage_bytes)})));

1034
  auto* temp_storage = tmp.mutable_data<uint8_t>(place);
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

  cub::DeviceReduce::Reduce(temp_storage,
                            temp_storage_bytes,
                            trans_x,
                            y_data,
                            reduce_num,
                            reducer,
                            reducer.initial(),
                            stream);
}

template <typename Tx,
          typename Ty,
          template <typename> class ReduceOp,
          typename TransformOp>
static
    typename std::enable_if<std::is_same<Tx, paddle::platform::float16>::value,
                            void>::type
    CubTensorReduceFunctorImpl(const Tx* x_data,
                               Ty* y_data,
                               const TransformOp& transform,
                               int reduce_num,
                               const paddle::platform::Place& place,
                               gpuStream_t stream) {
1059
  PADDLE_THROW(pten::errors::InvalidArgument(
1060 1061 1062
      "Tx should not be float16 when using cub::DeviceReduce::Reduce()."));
}

1063 1064
template <typename Tx,
          typename Ty,
1065 1066
          template <typename> class ReduceOp,
          typename TransformOp>
1067 1068
void TensorReduceFunctorImpl(const pten::DenseTensor& x,
                             pten::DenseTensor* y,
1069 1070
                             const TransformOp& transform,
                             const std::vector<int>& origin_reduce_dims,
1071
                             gpuStream_t stream) {
1072
  y->mutable_data<Ty>(x.place());
1073

1074
  auto x_dim = pten::framework::vectorize<int>(x.dims());
1075 1076
  auto config = ReduceConfig<Ty>(origin_reduce_dims, x_dim);
  config.Run();
1077
  int numel = x.numel();
1078 1079 1080 1081
  // after config.run()
  // SetOutputData for ReduceHigherDim when should_reduce_again is true,
  // temp_output should be stored temp_data in output_data space or stored in
  // y_data;
1082

1083 1084
  pten::DDim tmp_ddim;
  pten::DenseTensor tmp = pten::DenseTensor(
1085 1086
      pten::make_intrusive<paddle::experimental::SharedStorage>(y->place()),
      pten::DenseTensorMeta(y->dtype(), tmp_ddim, y->layout()));
1087 1088

  auto x_data = x.data<Tx>();
1089
  auto y_data = y->data<Ty>();
1090 1091 1092 1093

  auto* dev_ctx = static_cast<paddle::platform::CUDADeviceContext*>(
      paddle::platform::DeviceContextPool::Instance().Get(x.place()));
  if (config.reduce_num == 1) {
1094 1095
    std::vector<const DenseTensor*> inputs = {&x};
    std::vector<DenseTensor*> outputs = {y};
1096
    funcs::LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, Tx, Ty>(
1097
        *dev_ctx, inputs, &outputs, transform);
1098 1099 1100 1101
    return;
  }

  config.SetOutputData(y_data, x.place(), &tmp);
1102 1103
  constexpr bool kIsTxFP16 = std::is_same<Tx, paddle::platform::float16>::value;
  bool use_cub_reduce = config.reduce_num == numel && !kIsTxFP16;
1104
  if (use_cub_reduce) {
1105 1106
    CubTensorReduceFunctorImpl<Tx, Ty, ReduceOp, TransformOp>(
        x_data, y_data, transform, config.reduce_num, x.place(), stream);
1107 1108 1109
    return;
  }

1110 1111
  using MPType = typename kps::details::MPTypeTrait<Ty>::Type;
  auto reducer = ReduceOp<MPType>();
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
  // launch ReduceHigherDimKernel
  // when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
  // function will be used
  // eg: x_dim = {nz, ny, nx}, nx != 1, axis can be 0 or 1
  //     if axis = 1 then grid.z = nz, grid.y = ny / block_size, grid.x = nx /
  //     32
  //     else grid.z = 1, grid.y = ny / block_size, grid.x = nx /32
  if (config.reduce_type == ReduceType::kReduceHigherDim) {
    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.blocking_size,
                                        0);
    dim.SetRem(config.left_num % config.block.x,
               config.reduce_num % config.blocking_size,
               0);

#ifdef PADDLE_WITH_XPU2
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    ReduceHigherDimKernel<Tx,
                          Ty,
                          MPType,
                          ReduceOp<MPType>,
                          TransformOp><<<8, 128, stream>>>(x_data,
                                                           config.output_data,
                                                           reducer,
                                                           transform,
                                                           reducer.initial(),
                                                           config.reduce_num,
                                                           config.left_num,
                                                           config.blocking_size,
                                                           dim);
1144
#else
1145
    ReduceHigherDimKernel<
1146 1147 1148
        Tx,
        Ty,
        MPType,
1149
        ReduceOp<MPType>,
1150 1151 1152 1153
        TransformOp><<<config.grid, config.block, 0, stream>>>(
        x_data,
        config.output_data,
        reducer,
1154
        transform,
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
        reducer.initial(),
        config.reduce_num,
        config.left_num,
        config.blocking_size,
        dim);
#endif

    if (config.should_reduce_again) {
      dim3 block = dim3(config.block.x, 1, 1);
      dim3 grid = dim3(config.grid.x, 1, config.grid.z);
      kps::DimConfig dim2 =
          kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
      dim2.SetRem(config.left_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU2
1170
      ReduceHigherDimKernel<
1171 1172 1173
          Ty,
          Ty,
          MPType,
1174
          ReduceOp<MPType>,
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
          kps::IdentityFunctor<Ty, MPType>><<<8, 128, stream>>>(
          config.output_data,
          y_data,
          reducer,
          kps::IdentityFunctor<Ty, MPType>(config.grid.y),
          reducer.initial(),
          config.grid.y,
          config.left_num,
          config.grid.y,
          dim2);
#else
1186
      ReduceHigherDimKernel<
1187 1188 1189
          Ty,
          Ty,
          MPType,
1190
          ReduceOp<MPType>,
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
          kps::IdentityFunctor<Ty, MPType>><<<grid, block, 0, stream>>>(
          config.output_data,
          y_data,
          reducer,
          kps::IdentityFunctor<Ty, MPType>(config.grid.y),
          reducer.initial(),
          config.grid.y,
          config.left_num,
          config.grid.y,
          dim2);
#endif
    }
    return;
  }

  // when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
  // when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
  // function will be used
1209 1210
  LaunchReduceKernel<Tx, Ty, MPType, ReduceOp<MPType>, TransformOp>(
      x_data, y_data, reducer, transform, reducer.initial(), stream, config);
1211 1212
}

1213
}  // namespace kernels
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

template <typename T,
          template <typename> class ReduceOp,
          template <typename, typename> class TransformOp>
void Reduce(const GPUContext& dev_ctx,
            const DenseTensor& x,
            bool reduce_all,
            const std::vector<int64_t>& dims,
            bool keep_dim,
            DataType out_dtype,
            DenseTensor* out) {
  std::vector<int> reduce_dims =
      pten::kernels::details::GetReduceDim(dims, x.dims().size(), reduce_all);

  int reduce_num = 1;
  for (auto i : reduce_dims) {
    reduce_num *= (x.dims())[i];
  }

  gpuStream_t stream = dev_ctx.stream();

  if (out_dtype != pten::DataType::UNDEFINED && out_dtype != x.dtype()) {
    PD_DISPATCH_FLOATING_AND_COMPLEX_AND_2_TYPES(
        pten::DataType::INT32,
        pten::DataType::INT64,
        out_dtype,
        "TensorReduceFunctorImpl",
        ([&] {
          using MPType = typename kps::details::MPTypeTrait<data_t>::Type;
          pten::kernels::TensorReduceFunctorImpl<T,
                                                 data_t,
                                                 ReduceOp,
                                                 TransformOp<T, MPType>>(
              x, out, TransformOp<T, MPType>(reduce_num), reduce_dims, stream);
        }));
  } else {
    using MPType = typename kps::details::MPTypeTrait<T>::Type;
    pten::kernels::
        TensorReduceFunctorImpl<T, T, ReduceOp, TransformOp<T, MPType>>(
            x, out, TransformOp<T, MPType>(reduce_num), reduce_dims, stream);
  }
}
1256
}  // namespace pten
1257 1258

#endif