test_mkldnn_caching.cc 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <map>
#include <random>
#include <string>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"

USE_OP(elementwise_add);
USE_OP_DEVICE_KERNEL(elementwise_add, MKLDNN);
30 31
USE_OP(elementwise_mul);
USE_OP_DEVICE_KERNEL(elementwise_mul, MKLDNN);
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
USE_OP(relu);
USE_OP_DEVICE_KERNEL(relu, MKLDNN);
USE_OP(softmax);
USE_OP_DEVICE_KERNEL(softmax, MKLDNN);

namespace paddle {
namespace operators {

struct InputVars {
  std::string name;
  framework::LoDTensor *tensor;
};

class CacheTester {
 public:
  CacheTester() {
    // Clear oneDNN cache
    auto &pool = platform::DeviceContextPool::Instance();
    platform::CPUPlace place;
    onednn_dev_ctx_ =
        dynamic_cast<platform::MKLDNNDeviceContext *>(pool.Get(place));
53
    onednn_dev_ctx_->ResetBlobMap(nullptr);
54 55 56 57 58 59 60 61 62 63 64 65 66
  }

  bool Analyze(unsigned short int num_entries) {
    //  Number of created objects in cache should be as expected (num_entries)
    return onednn_dev_ctx_->GetCachedObjectsNumber() == num_entries;
  }

 private:
  platform::MKLDNNDeviceContext *onednn_dev_ctx_;
};

template <typename T>
void RunOperator(const platform::Place &place, const std::string &op_type,
67 68
                 const framework::DDim &dims, const std::string &output_name,
                 bool inplace = false) {
69 70
  framework::Scope scope;

71 72 73 74
  std::map<const std::string, int> num_inputs = {{"softmax", 1},
                                                 {"relu", 1},
                                                 {"elementwise_add", 2},
                                                 {"elementwise_mul", 2}};
75

76
  std::string first_input = inplace == true ? output_name : "x";
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

  std::vector<InputVars> input_names = {
      {first_input, scope.Var(first_input)->GetMutable<framework::LoDTensor>()},
      {"x1", num_inputs[op_type] > 1
                 ? scope.Var("x1")->GetMutable<framework::LoDTensor>()
                 : nullptr},
      {"x2", num_inputs[op_type] > 2
                 ? scope.Var("x2")->GetMutable<framework::LoDTensor>()
                 : nullptr},
      {"x3", num_inputs[op_type] > 3
                 ? scope.Var("x3")->GetMutable<framework::LoDTensor>()
                 : nullptr},
      {"x4", num_inputs[op_type] > 4
                 ? scope.Var("x4")->GetMutable<framework::LoDTensor>()
                 : nullptr}};
  auto *y = scope.Var(output_name)->GetMutable<framework::LoDTensor>();

  // Initialize input data
  std::uniform_real_distribution<T> dist(static_cast<T>(10.0),
                                         static_cast<T>(20.0));
  std::mt19937 engine;
  size_t numel = static_cast<size_t>(framework::product(dims));
  for (int i = 0; i < num_inputs[op_type]; ++i) {
    input_names[i].tensor->Resize(dims);
    auto data_ptr = input_names[i].tensor->mutable_data<T>(place);
    for (size_t i = 0; i < numel; ++i) {
      data_ptr[i] = dist(engine);
    }
  }

  // Initialize output
  y->Resize(dims);
  auto y_ptr = y->mutable_data<T>(place);
  for (size_t i = 0; i < numel; ++i) {
    y_ptr[i] = static_cast<T>(0);
  }

  auto &pool = platform::DeviceContextPool::Instance();

116 117 118 119 120 121 122
  auto op = num_inputs[op_type] > 1
                ? framework::OpRegistry::CreateOp(
                      op_type, {{"X", {first_input}}, {"Y", {"x1"}}},
                      {{"Out", {output_name}}}, {{"use_mkldnn", {true}}})
                : framework::OpRegistry::CreateOp(
                      op_type, {{"X", {first_input}}}, {{"Out", {output_name}}},
                      {{"use_mkldnn", {true}}});
123 124 125 126 127

  op->Run(scope, place);
  pool.Get(place)->Wait();
}

128 129
TEST(test_softmax_reuse_cache, cpu_place) {
  framework::DDim dims({32, 64});
130 131
  platform::CPUPlace p;
  CacheTester ct;
132 133 134
  RunOperator<float>(p, "softmax", dims, "softmax_out");
  RunOperator<float>(p, "softmax", dims, "softmax_out");
  PADDLE_ENFORCE_EQ(ct.Analyze(4), true,
135
                    platform::errors::InvalidArgument(
136
                        "Wrong number of cached oneDNN objects"));
137 138
}

139 140
TEST(test_softmax_noreuse_cache, cpu_place) {
  framework::DDim dims({32, 64});
141 142
  platform::CPUPlace p;
  CacheTester ct;
143 144 145
  RunOperator<float>(p, "softmax", dims, "softmax_out");
  RunOperator<float>(p, "softmax", dims, "softmax_out2");
  PADDLE_ENFORCE_EQ(ct.Analyze(8), true,
146
                    platform::errors::InvalidArgument(
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
                        "Wrong number of cached oneDNN objects"));
}

TEST(test_softmax_inplace_cache, cpu_place) {
  framework::DDim dims({32, 64});
  platform::CPUPlace p;
  CacheTester ct;
  RunOperator<float>(p, "softmax", dims, "softmax_out");
  RunOperator<float>(p, "softmax", dims, "softmax_out", true);
  PADDLE_ENFORCE_EQ(ct.Analyze(7), true,
                    platform::errors::InvalidArgument(
                        "Wrong number of cached oneDNN objects"));
}

TEST(test_relu_inplace_cache, cpu_place) {
  framework::DDim dims({32, 64});
  platform::CPUPlace p;
  CacheTester ct;
  RunOperator<float>(p, "relu", dims, "relu_out");
  RunOperator<float>(p, "relu", dims, "relu_out", true);
  PADDLE_ENFORCE_EQ(ct.Analyze(7), true,
                    platform::errors::InvalidArgument(
                        "Wrong number of cached oneDNN objects"));
}

TEST(test_elementwise_add_reuse_cache, cpu_place) {
  framework::DDim dims({32, 64});
  platform::CPUPlace p;
  CacheTester ct;
  RunOperator<float>(p, "elementwise_add", dims, "elementwise_add_out");
  RunOperator<float>(p, "relu", dims, "elementwise_add_out", true);
  PADDLE_ENFORCE_EQ(ct.Analyze(8), true,
                    platform::errors::InvalidArgument(
                        "Wrong number of cached oneDNN objects"));
181 182 183 184
}

}  // namespace operators
}  // namespace paddle