all_reduce_op_handle.cc 12.4 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
15
#include <algorithm>
C
chengduoZH 已提交
16
#include "paddle/fluid/framework/details/container_cast.h"
C
chengduoZH 已提交
17
#include "paddle/fluid/framework/details/reduce_and_gather.h"
C
chengduoZH 已提交
18
#include "paddle/fluid/framework/details/variable_visitor.h"
19 20 21 22 23 24 25
#include "paddle/fluid/framework/operator.h"

#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "dgc/dgc.h"
#endif

#include "paddle/fluid/platform/gpu_info.h"
26
#include "paddle/fluid/platform/profiler.h"
Y
Stash  
Yu Yang 已提交
27

28
// asynchronous nccl allreduce or synchronous issue:
Y
Yancey1989 已提交
29 30
// https://github.com/PaddlePaddle/Paddle/issues/15049
DEFINE_bool(
31
    sync_nccl_allreduce, true,
Y
Yancey1989 已提交
32 33 34
    "If set true, will call `cudaStreamSynchronize(nccl_stream)`"
    "after allreduce, this mode can get better performance in some scenarios.");

Y
Yu Yang 已提交
35 36 37
namespace paddle {
namespace framework {
namespace details {
C
chengduoZH 已提交
38

P
peizhilin 已提交
39
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
40 41
AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
                                     const std::vector<Scope *> &local_scopes,
42
                                     const std::vector<platform::Place> &places,
43 44
                                     const platform::NCCLContextMap *ctxs,
                                     bool is_encoded, int nranks)
X
Xin Pan 已提交
45 46 47
    : OpHandleBase(node),
      local_scopes_(local_scopes),
      places_(places),
48 49 50
      nccl_ctxs_(ctxs),
      is_encoded_(is_encoded),
      nranks_(nranks) {
51
  if (nccl_ctxs_) {
C
chengduoZH 已提交
52
    for (auto &p : places_) {
C
chengduo 已提交
53
      this->SetDeviceContext(p, nccl_ctxs_->DevCtx(p));
C
chengduoZH 已提交
54
    }
Y
Yu Yang 已提交
55
  }
G
gongweibao 已提交
56 57 58 59
  // TODO(gongwb) :polish them!
  if (is_encoded) {
    VLOG(1) << "Use dgc allreduce mode";
  }
Y
Yu Yang 已提交
60
}
C
chengduoZH 已提交
61
#else
X
Xin Pan 已提交
62 63
AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
                                     const std::vector<Scope *> &local_scopes,
64
                                     const std::vector<platform::Place> &places)
X
Xin Pan 已提交
65
    : OpHandleBase(node), local_scopes_(local_scopes), places_(places) {}
C
chengduoZH 已提交
66
#endif
Y
Yu Yang 已提交
67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
void AllReduceOpHandle::RunImplEncoded() {
  platform::RecordEvent record_event(Name());

  WaitInputVarGenerated();

  auto in_var_handles = DynamicCast<VarHandle>(this->Inputs());
  auto out_var_handles = DynamicCast<VarHandle>(this->Outputs());
  PADDLE_ENFORCE_EQ(
      in_var_handles.size(), places_.size(),
      "The NoDummyInputSize should be equal to the number of places.");
  PADDLE_ENFORCE_EQ(
      in_var_handles.size(), out_var_handles.size(),
      "The NoDummyInputSize and NoDummyOutputSize should be equal.");

  std::vector<const LoDTensor *> ins;
  std::vector<LoDTensor *> outs;
  int k = -1;
  for (size_t i = 0; i < local_scopes_.size(); ++i) {
    auto &local_scope =
        local_scopes_[i]->FindVar(kLocalExecScopeName)->Get<Scope *>();
    auto original_name =
        paddle::framework::GradOriginalVarName(in_var_handles[i]->name());
    auto encode_var_name = original_name + g_dgc_encoded;
    auto *in_var = local_scope->FindVar(encode_var_name);
G
gongweibao 已提交
93
    PADDLE_ENFORCE_NOT_NULL(in_var, "%s should not be null", encode_var_name);
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    auto &in = in_var->Get<LoDTensor>();
    ins.emplace_back(&in);

    auto *out = local_scope->FindVar(out_var_handles[i]->name())
                    ->GetMutable<LoDTensor>();
    outs.emplace_back(out);

    if (k < 0) {
      k = GetKValue(in_var_handles[i]->name());
    }
  }

  PADDLE_ENFORCE(platform::is_gpu_place(ins[0]->place()));
  PADDLE_ENFORCE(platform::is_gpu_place(outs[0]->place()));
  PADDLE_ENFORCE(nccl_ctxs_, "nccl_ctxs should not be nullptr.");

  int dtype = -1;
  size_t in_numel = 0;
  size_t out_numel = 0;
  PADDLE_ENFORCE(nranks_ > 1);
  std::vector<std::function<void()>> all_reduce_calls;

  for (size_t i = 0; i < local_scopes_.size(); ++i) {
    auto &place = places_[i];
    auto &in = *ins[i];
    void *in_tensor_buf = const_cast<void *>(in.data<void>());

    auto &out = *outs[i];
    float *out_tensor_buf = out.data<float>();

    dtype = (dtype == -1) ? platform::ToNCCLDataType(in.type()) : dtype;
    in_numel = (in_numel == 0) ? static_cast<size_t>(in.numel()) : in_numel;
    PADDLE_ENFORCE(in_numel % 2 == 0);
    PADDLE_ENFORCE(in_numel / 2 == static_cast<size_t>(k));
    out_numel = (out_numel == 0) ? static_cast<size_t>(out.numel()) : out_numel;

    int dev_id = boost::get<platform::CUDAPlace>(place).device;
    auto &nccl_ctx = nccl_ctxs_->at(dev_id);
    auto stream = nccl_ctx.stream();
    auto comm = nccl_ctx.comm_;

    auto &allocator =
        platform::DeviceTemporaryAllocator::Instance().Get(place, stream);
    int encode_size = 2 * k * sizeof(int);
    // dgc use ncclAllGather to get all the encoded data
    // so the buffer need nranks.
    int buf_size = nranks_ * encode_size;
    auto tmp_ious_data = allocator.Allocate(buf_size);
    void *gather_buff = reinterpret_cast<void *>(tmp_ious_data->ptr());

    VLOG(10) << "in_numel:" << in_numel << ", out_numel:" << out_numel
             << ", nranks:" << nranks_ << ", gather_buf size:" << buf_size
             << ", k:" << k << ", place:" << place << ", dtype:" << dtype;

    all_reduce_calls.emplace_back([=] {
      PADDLE_ENFORCE(paddle::communication::dgc::sparseAllGReduce(
          in_tensor_buf, gather_buff, k, out_tensor_buf, out_numel, comm,
          stream));
    });
  }

  this->RunAndRecordEvent([&] {
    if (all_reduce_calls.size() == 1UL) {
      // Do not use NCCLGroup when manage NCCL by per thread per device
      all_reduce_calls[0]();
    } else {
      platform::NCCLGroupGuard guard;
      for (auto &call : all_reduce_calls) {
        call();
      }
    }
  });

  if (FLAGS_sync_nccl_allreduce) {
    for (auto &p : places_) {
      int dev_id = boost::get<platform::CUDAPlace>(p).device;
      auto &nccl_ctx = nccl_ctxs_->at(dev_id);
      auto stream = nccl_ctx.stream();
      cudaError_t e_sync = cudaStreamSynchronize(stream);
      if (e_sync != 0) {
        LOG(FATAL) << "cudaStreamSynchronize " << cudaGetErrorString(e_sync);
      }

      cudaError_t e_get = cudaGetLastError();
      if (e_get != 0) {
        LOG(FATAL) << "cudaGetLastError  " << cudaGetErrorString(e_get)
                   << " errno:" << e_get;
      }
    }
  }
}

int AllReduceOpHandle::GetKValue(const std::string &grad_name) {
  auto original_name = paddle::framework::GradOriginalVarName(grad_name);
  auto var_name = original_name + g_dgc_k;
  PADDLE_ENFORCE(local_scopes_.size() > 0);

  auto *scope = local_scopes_[0];
  auto &local_scope = scope->FindVar(kLocalExecScopeName)->Get<Scope *>();
  auto var = local_scope->FindVar(var_name);
  PADDLE_ENFORCE_NOT_NULL(var);
  auto tensor = var->Get<LoDTensor>().data<float>();
  return *tensor;
}
#endif

#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
bool AllReduceOpHandle::IsEncoded() {
  if (!is_encoded_) {
    return false;
  }
  auto counter_name = g_dgc_counter_name;
  auto step_name = g_dgc_rampup_begin_step;
  PADDLE_ENFORCE(local_scopes_.size() > 0);

  auto *scope = local_scopes_[0];
  auto &local_scope = scope->FindVar(kLocalExecScopeName)->Get<Scope *>();
  auto count_var = local_scope->FindVar(counter_name);
  auto step_var = local_scope->FindVar(step_name);
  if (count_var == nullptr || step_var == nullptr) {
    PADDLE_THROW("not find count_var:%s or step_var:%s", counter_name,
                 step_var);
  }

  float count = *count_var->Get<LoDTensor>().data<float>();
  float step = *step_var->Get<LoDTensor>().data<float>();
  if (static_cast<int>(count) < static_cast<int>(step)) {
    VLOG(10) << "in all_reduce currentstep:" << count
             << " < rampup_begin_step:" << step
             << " so not use sparse all reduce";
    return false;
  }

  return true;
}
#else
bool AllReduceOpHandle::IsEncoded() { return false; }
#endif

233
void AllReduceOpHandle::RunImpl() {
234 235 236 237 238 239 240 241 242 243 244 245 246
  if (!IsEncoded()) {
    RunImplNormal();
    return;
  }

#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  RunImplEncoded();
#else
  PADDLE_THROW("Not compiled with CUDA");
#endif
}

void AllReduceOpHandle::RunImplNormal() {
247
  platform::RecordEvent record_event(Name());
Y
Yancey1989 已提交
248

Y
Yancey1989 已提交
249
  WaitInputVarGenerated();
250

Y
Yancey1989 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264
  auto in_var_handles = DynamicCast<VarHandle>(this->Inputs());
  auto out_var_handles = DynamicCast<VarHandle>(this->Outputs());
  PADDLE_ENFORCE_EQ(
      in_var_handles.size(), places_.size(),
      "The NoDummyInputSize should be equal to the number of places.");
  PADDLE_ENFORCE_EQ(
      in_var_handles.size(), out_var_handles.size(),
      "The NoDummyInputSize and NoDummyOutputSize should be equal.");

  std::vector<const LoDTensor *> lod_tensors;
  for (size_t i = 0; i < local_scopes_.size(); ++i) {
    auto *s = local_scopes_[i];
    auto &local_scope = *s->FindVar(kLocalExecScopeName)->Get<Scope *>();
    auto &lod_tensor =
G
gongweibao 已提交
265
        local_scope.FindVar(in_var_handles[i]->name())->Get<LoDTensor>();
Y
Yancey1989 已提交
266
    lod_tensors.emplace_back(&lod_tensor);
267 268
    VLOG(10) << "place:" << i << ", input_name:" << in_var_handles[i]->name()
             << ", out_name:" << out_var_handles[i]->name();
G
gongweibao 已提交
269
    PADDLE_ENFORCE_EQ(in_var_handles[i]->name(), out_var_handles[i]->name(),
Y
Yancey1989 已提交
270 271
                      "The name of input and output should be equal.");
  }
Y
Stash  
Yu Yang 已提交
272

Y
Yancey1989 已提交
273
  if (platform::is_gpu_place(lod_tensors[0]->place())) {
P
peizhilin 已提交
274
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    PADDLE_ENFORCE(nccl_ctxs_, "nccl_ctxs should not be nullptr.");
    int dtype = -1;
    size_t numel = 0;
    std::vector<std::function<void()>> all_reduce_calls;
    for (size_t i = 0; i < local_scopes_.size(); ++i) {
      auto &p = places_[i];
      auto &lod_tensor = *lod_tensors[i];
      void *buffer = const_cast<void *>(lod_tensor.data<void>());

      if (dtype == -1) {
        dtype = platform::ToNCCLDataType(lod_tensor.type());
      }

      if (numel == 0) {
        numel = static_cast<size_t>(lod_tensor.numel());
      }

      int dev_id = boost::get<platform::CUDAPlace>(p).device;
      auto &nccl_ctx = nccl_ctxs_->at(dev_id);
      auto stream = nccl_ctx.stream();
      auto comm = nccl_ctx.comm_;
296 297 298 299 300

      VLOG(10) << "before all reduce buffer:" << buffer << ", numel:" << numel
               << ", dev_id:" << dev_id << ", dtype:" << dtype
               << ", place:" << p;

Y
Yancey1989 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314
      all_reduce_calls.emplace_back([=] {
        PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
            buffer, buffer, numel, static_cast<ncclDataType_t>(dtype), ncclSum,
            comm, stream));
      });
    }
    this->RunAndRecordEvent([&] {
      if (all_reduce_calls.size() == 1UL) {
        // Do not use NCCLGroup when manage NCCL by per thread per device
        all_reduce_calls[0]();
      } else {
        platform::NCCLGroupGuard guard;
        for (auto &call : all_reduce_calls) {
          call();
Y
Stash  
Yu Yang 已提交
315
        }
Y
Yancey1989 已提交
316 317
      }
    });
Y
Stash  
Yu Yang 已提交
318

Y
Yancey1989 已提交
319 320
    if (FLAGS_sync_nccl_allreduce) {
      for (auto &p : places_) {
Y
Stash  
Yu Yang 已提交
321
        int dev_id = boost::get<platform::CUDAPlace>(p).device;
C
chengduoZH 已提交
322
        auto &nccl_ctx = nccl_ctxs_->at(dev_id);
Y
Stash  
Yu Yang 已提交
323
        auto stream = nccl_ctx.stream();
Y
Yancey1989 已提交
324
        cudaStreamSynchronize(stream);
Y
Yu Yang 已提交
325
      }
Y
Yancey1989 已提交
326
    }
Y
Yancey1989 已提交
327

C
chengduoZH 已提交
328
#else
Y
Yancey1989 已提交
329
    PADDLE_THROW("Not compiled with CUDA");
C
chengduoZH 已提交
330
#endif
Y
Yancey1989 已提交
331 332 333 334
  } else {  // Special handle CPU only Operator's gradient. Like CRF
    auto &trg = *this->local_scopes_[0]
                     ->FindVar(kLocalExecScopeName)
                     ->Get<Scope *>()
G
gongweibao 已提交
335
                     ->FindVar(out_var_handles[0]->name())
Y
Yancey1989 已提交
336 337 338 339 340 341 342 343 344 345
                     ->GetMutable<framework::LoDTensor>();

    // Reduce All Tensor to trg in CPU
    ReduceLoDTensor func(lod_tensors, &trg);
    VisitDataType(lod_tensors[0]->type(), func);

    for (size_t i = 1; i < local_scopes_.size(); ++i) {
      auto &scope =
          *local_scopes_[i]->FindVar(kLocalExecScopeName)->Get<Scope *>();
      auto &p = places_[i];
G
gongweibao 已提交
346
      auto *var = scope.FindVar(out_var_handles[i]->name());
Y
Yancey1989 已提交
347 348 349 350 351 352 353
      auto *dev_ctx = dev_ctxes_.at(p);

      RunAndRecordEvent(p, [&trg, var, dev_ctx, p] {
        auto &tensor_gpu = *var->GetMutable<framework::LoDTensor>();
        auto &tensor_cpu = trg;
        TensorCopy(tensor_cpu, p, *dev_ctx, &tensor_gpu);
      });
Y
Yu Yang 已提交
354 355 356
    }
  }
}
Y
Yu Yang 已提交
357

C
chengduoZH 已提交
358
std::string AllReduceOpHandle::Name() const { return "all_reduce"; }
Y
Yu Yang 已提交
359 360 361
}  // namespace details
}  // namespace framework
}  // namespace paddle