test_imperative_gnn.py 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
import sys

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
X
polish  
Xin Pan 已提交
23
from paddle.fluid.optimizer import AdamOptimizer
24
from test_imperative_base import new_program_scope
L
lujun 已提交
25
from paddle.fluid.dygraph.base import to_variable
26
from paddle.fluid.framework import _test_eager_guard
27 28 29 30 31 32


def gen_data():
    pass


33
class GraphConv(fluid.Layer):
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    def __init__(self, name_scope, in_features, out_features):
        super(GraphConv, self).__init__(name_scope)

        self._in_features = in_features
        self._out_features = out_features
        self.weight = self.create_parameter(
            attr=None,
            dtype='float32',
            shape=[self._in_features, self._out_features])
        self.bias = self.create_parameter(
            attr=None, dtype='float32', shape=[self._out_features])

    def forward(self, features, adj):
        support = fluid.layers.matmul(features, self.weight)
        # TODO(panyx0718): sparse matmul?
        return fluid.layers.matmul(adj, support) + self.bias


52
class GCN(fluid.Layer):
53 54 55 56 57 58 59 60 61 62
    def __init__(self, name_scope, num_hidden):
        super(GCN, self).__init__(name_scope)
        self.gc = GraphConv(self.full_name(), num_hidden, 32)
        self.gc2 = GraphConv(self.full_name(), 32, 10)

    def forward(self, x, adj):
        x = fluid.layers.relu(self.gc(x, adj))
        return self.gc2(x, adj)


L
lujun 已提交
63
class TestDygraphGNN(unittest.TestCase):
64
    def func_gnn_float32(self):
C
cnn 已提交
65
        paddle.seed(90)
L
Leo Chen 已提交
66
        paddle.framework.random._manual_program_seed(90)
X
polish  
Xin Pan 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
        startup = fluid.Program()
        main = fluid.Program()

        scope = fluid.core.Scope()
        with new_program_scope(main=main, startup=startup, scope=scope):
            features = fluid.layers.data(
                name='features',
                shape=[1, 100, 50],
                dtype='float32',
                append_batch_size=False)
            # Use selected rows when it's supported.
            adj = fluid.layers.data(
                name='adj',
                shape=[1, 100, 100],
                dtype='float32',
                append_batch_size=False)
            labels = fluid.layers.data(
                name='labels',
                shape=[100, 1],
                dtype='int64',
                append_batch_size=False)

            model = GCN('test_gcn', 50)
            logits = model(features, adj)
            logits = fluid.layers.reshape(logits, logits.shape[1:])
            # In other example, it's nll with log_softmax. However, paddle's
            # log_loss only supports binary classification now.
            loss = fluid.layers.softmax_with_cross_entropy(logits, labels)
            loss = fluid.layers.reduce_sum(loss)

            adam = AdamOptimizer(learning_rate=1e-3)
            adam.minimize(loss)
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(startup)
            static_loss = exe.run(feed={
103
                'features': np.ones(
X
polish  
Xin Pan 已提交
104
                    [1, 100, 50], dtype=np.float32),
105
                'adj': np.ones(
X
polish  
Xin Pan 已提交
106
                    [1, 100, 100], dtype=np.float32),
107
                'labels': np.ones(
X
polish  
Xin Pan 已提交
108 109 110 111 112 113 114
                    [100, 1], dtype=np.int64)
            },
                                  fetch_list=[loss])[0]

            static_weight = np.array(
                scope.find_var(model.gc.weight.name).get_tensor())

L
lujun 已提交
115
        with fluid.dygraph.guard():
C
cnn 已提交
116
            paddle.seed(90)
L
Leo Chen 已提交
117
            paddle.framework.random._manual_program_seed(90)
118

119
            features = np.ones([1, 100, 50], dtype=np.float32)
X
polish  
Xin Pan 已提交
120
            # Use selected rows when it's supported.
121 122
            adj = np.ones([1, 100, 100], dtype=np.float32)
            labels = np.ones([100, 1], dtype=np.int64)
123 124 125 126 127 128 129 130 131

            model = GCN('test_gcn', 50)
            logits = model(to_variable(features), to_variable(adj))
            logits = fluid.layers.reshape(logits, logits.shape[1:])
            # In other example, it's nll with log_softmax. However, paddle's
            # log_loss only supports binary classification now.
            loss = fluid.layers.softmax_with_cross_entropy(logits,
                                                           to_variable(labels))
            loss = fluid.layers.reduce_sum(loss)
132
            loss.backward()
133 134
            adam = AdamOptimizer(
                learning_rate=1e-3, parameter_list=model.parameters())
135

X
polish  
Xin Pan 已提交
136
            adam.minimize(loss)
137
            model.clear_gradients()
138 139
            loss_value = loss.numpy()
            model_gc_weight_value = model.gc.weight.numpy()
140 141

        with fluid.dygraph.guard():
C
cnn 已提交
142
            paddle.seed(90)
L
Leo Chen 已提交
143
            paddle.framework.random._manual_program_seed(90)
144

145
            features2 = np.ones([1, 100, 50], dtype=np.float32)
146
            # Use selected rows when it's supported.
147 148
            adj2 = np.ones([1, 100, 100], dtype=np.float32)
            labels2 = np.ones([100, 1], dtype=np.int64)
149 150 151 152 153 154 155 156 157

            model2 = GCN('test_gcn', 50)
            logits2 = model2(to_variable(features2), to_variable(adj2))
            logits2 = fluid.layers.reshape(logits2, logits2.shape[1:])
            # In other example, it's nll with log_softmax. However, paddle's
            # log_loss only supports binary classification now.
            loss2 = fluid.layers.softmax_with_cross_entropy(
                logits2, to_variable(labels2))
            loss2 = fluid.layers.reduce_sum(loss2)
158
            loss2.backward()
159 160
            adam2 = AdamOptimizer(
                learning_rate=1e-3, parameter_list=model2.parameters())
161
            adam2.minimize(loss2)
162
            model2.clear_gradients()
163 164 165 166 167 168 169 170
            loss2_value = loss2.numpy()
            model2_gc_weight_value = model2.gc.weight.numpy()

        self.assertEqual(static_loss, loss_value)
        self.assertTrue(np.allclose(static_weight, model_gc_weight_value))
        self.assertEqual(static_loss, loss2_value)
        self.assertTrue(np.allclose(static_weight, model2_gc_weight_value))
        sys.stderr.write('%s %s\n' % (static_loss, loss_value))
171

172 173 174 175 176
    def test_gnn_float32(self):
        with _test_eager_guard():
            self.func_gnn_float32()
        self.func_gnn_float32()

177 178 179

if __name__ == '__main__':
    unittest.main()