squared_l2_distance_op.cc 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/squared_l2_distance_op.h"
16

H
Huihuang Zheng 已提交
17 18 19 20
#include <memory>

#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"

21 22 23 24 25 26 27
namespace paddle {
namespace operators {

class SquaredL2DistanceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

28
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
29 30 31 32 33 34
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SquaredL2DistanceOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"),
                   "Input(Y) of SquaredL2DistanceOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("sub_result"),
35
        "Output(sub_result) of SquaredL2DistanceOp should not be null.");
Q
Qiao Longfei 已提交
36 37
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SquaredL2DistanceOp should not be null.");
38

Q
Qiao Longfei 已提交
39 40
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
41

42
    PADDLE_ENFORCE_EQ(framework::arity(x_dims), framework::arity(y_dims),
43 44
                      "Tensor rank of both SquaredL2DistanceOp's "
                      "inputs must be same.");
45 46

    int rank = framework::arity(x_dims);
Y
yangyaming 已提交
47
    PADDLE_ENFORCE_GE(rank, 2, "Tensor rank should be at least equal to 2.");
X
xuezhong 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (framework::product(x_dims) <= 0 || framework::product(y_dims) <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(product(x_dims) / x_dims[0],
                        product(y_dims) / y_dims[0],
                        "Product of dimensions expcet the first dimension of "
                        "input and target must be equal.");
    }
    check = true;
    if ((!ctx->IsRuntime()) && (y_dims[0] <= 0 || x_dims[0] <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE(y_dims[0] == 1 || y_dims[0] == x_dims[0],
                     "First dimension of target must be equal to input "
                     "or to 1.");
    }
Q
Qiao Longfei 已提交
68 69 70
    ctx->SetOutputDim("sub_result", {x_dims[0], product(x_dims) / x_dims[0]});
    ctx->SetOutputDim("Out", {x_dims[0], 1});
    ctx->ShareLoD("X", /*->*/ "Out");
71 72 73
  }
};

Z
Zeng Jinle 已提交
74
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SquaredL2DistanceGradOpNoBuffer, "X", "Y");
H
Huihuang Zheng 已提交
75

H
hong 已提交
76 77
template <typename T>
class SquaredL2DistanceGradOpMaker : public framework::SingleGradOpMaker<T> {
H
Huihuang Zheng 已提交
78
 public:
H
hong 已提交
79
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
Huihuang Zheng 已提交
80 81

 protected:
82
  void Apply(GradOpPtr<T> op) const override {
H
Huihuang Zheng 已提交
83 84
    op->SetType("squared_l2_distance_grad");

H
hong 已提交
85 86 87 88
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("sub_result", this->Output("sub_result"));
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
H
Huihuang Zheng 已提交
89

H
hong 已提交
90 91
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
H
Huihuang Zheng 已提交
92

H
hong 已提交
93
    op->SetAttrMap(this->Attrs());
H
Huihuang Zheng 已提交
94 95 96
  }
};

97 98
class SquaredL2DistanceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
99
  void Make() override {
100 101
    AddInput("X", "(Tensor) Input of SquaredL2DistanceOp.");
    AddInput("Y", "(Tensor) Target of SquaredL2DistanceOp.");
102
    AddOutput("sub_result",
103
              "(Tensor) Buffering subtraction result which "
104 105
              "will be reused in backward.")
        .AsIntermediate();
106
    AddOutput("Out", "(Tensor) Squared l2 distance between input and target.");
107
    AddComment(R"DOC(
108 109 110 111 112 113 114 115 116 117 118 119
SquaredL2Distance operator

This operator will cacluate the squared L2 distance for the input and 
the target. Number of distance value will be equal to the first dimension 
of input. First dimension of the target could be equal to the input or to 1. 
If the first dimension of target is 1, the operator will broadcast target's 
first dimension to input's first dimension. During backward propagation, 
the user can decide whether to calculate the gradient of the input or 
the target or both.

Both the input X and Y can carry the LoD (Level of Details) information. 
However, the output only shares the LoD information with input X.
120 121 122 123 124 125 126 127
    )DOC");
  }
};

class SquaredL2DistanceGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

128
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
129 130
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Gradient of Out should not be null");
H
Huihuang Zheng 已提交
131
    PADDLE_ENFORCE(ctx->HasInput("sub_result"), "SubResult should not be null");
Q
Qiao Longfei 已提交
132 133 134
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
135 136 137 138 139 140 141 142
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(out_dims[0], x_dims[0],
                        "First dimension of output gradient and "
                        "input value must be equal.");
      PADDLE_ENFORCE_EQ(out_dims[1], 1,
                        "Second dimension of output gradient "
                        "must be 1.");
    }
Q
Qiao Longfei 已提交
143 144 145 146
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) ctx->SetOutputDim(x_grad_name, x_dims);
    if (ctx->HasOutput(y_grad_name)) ctx->SetOutputDim(y_grad_name, y_dims);
147
  }
H
Huihuang Zheng 已提交
148 149 150 151

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
152 153 154
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "sub_result"),
        ctx.GetPlace());
H
Huihuang Zheng 已提交
155
  }
156 157 158 159 160 161
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
162 163 164 165 166
REGISTER_OPERATOR(
    squared_l2_distance, ops::SquaredL2DistanceOp,
    ops::SquaredL2DistanceOpMaker,
    ops::SquaredL2DistanceGradOpMaker<paddle::framework::OpDesc>,
    ops::SquaredL2DistanceGradOpMaker<paddle::imperative::OpBase>);
H
Huihuang Zheng 已提交
167 168
REGISTER_OPERATOR(squared_l2_distance_grad, ops::SquaredL2DistanceGradOp,
                  ops::SquaredL2DistanceGradOpNoBuffer);
169 170
REGISTER_OP_CPU_KERNEL(
    squared_l2_distance,
Q
QI JUN 已提交
171 172 173 174
    ops::SquaredL2DistanceKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(squared_l2_distance_grad,
                       ops::SquaredL2DistanceGradKernel<
                           paddle::platform::CPUDeviceContext, float>);