interpolate_mkldnn_op.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/operators/interpolate_op.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using framework::DataLayout;
using dnnl::memory;
using dnnl::primitive;
using dnnl::reorder;
using dnnl::stream;
using dnnl::resampling_forward;
using platform::GetMKLDNNFormat;
using platform::to_void_cast;

template <typename T = float>
class InterpolateMKLDNNHandler
33
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::resampling_forward> {
34 35 36
 public:
  InterpolateMKLDNNHandler(const dnnl::algorithm algo,
                           const dnnl::engine engine, platform::Place cpu_place,
37
                           const Tensor* x, Tensor* out)
38 39
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::resampling_forward>(
            engine, cpu_place) {
40
    const auto dst_tz = phi::vectorize(out->dims());
41 42 43
    const auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType<T>(),
                                     MKLDNNMemoryFormat::any);
    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_inference,
44
                                            algo, x->mem_desc(), dst_md);
45 46 47 48 49 50 51 52
  }
};

template <typename T = float>
class InterpolateMKLDNNKernel : public framework::OpKernel<T> {
  std::vector<int> ComputeOutputShape(
      const framework::ExecutionContext& ctx) const {
    const auto* x = ctx.Input<Tensor>("X");
53 54 55 56
    const auto& in_dims = x->dims();

    const framework::DDim in_dhw_dims =
        phi::slice_ddim(in_dims, 2, in_dims.size());
57 58

    std::vector<int> out_dims;
59
    out_dims.reserve(5);
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    if (in_dhw_dims.size() == 1) {
      out_dims.push_back(ctx.Attr<int>("out_w"));
    } else if (in_dhw_dims.size() == 2) {
      out_dims.push_back(ctx.Attr<int>("out_h"));
      out_dims.push_back(ctx.Attr<int>("out_w"));
    } else if (in_dhw_dims.size() == 3) {
      out_dims.push_back(ctx.Attr<int>("out_d"));
      out_dims.push_back(ctx.Attr<int>("out_h"));
      out_dims.push_back(ctx.Attr<int>("out_w"));
    }

    auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
    auto out_size = ctx.Input<Tensor>("OutSize");
    if (list_new_size_tensor.size() > 0) {
      auto new_size = get_new_shape(list_new_size_tensor);
      if (new_size.size() == out_dims.size()) {
        out_dims = new_size;
      }
    } else if (out_size != nullptr) {
      auto out_size_data = get_new_data_from_tensor<int>(out_size);
      if (out_size_data.size() == out_dims.size()) {
        out_dims = out_size_data;
      }
    } else {
84 85
      std::vector<float> scale;
      scale.reserve(3);
86 87 88
      auto scale_tensor = ctx.Input<Tensor>("Scale");
      if (scale_tensor != nullptr) {
        auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
89 90
        scale.resize(3, scale_data[0]);
        std::copy(scale_data.begin(), scale_data.end(), scale.begin());
91
      } else {
92 93 94 95 96 97 98 99
        std::string op_type = ctx.Type();

        if (op_type.find("v2") == std::string::npos) {  // v1
          scale.push_back(ctx.Attr<float>("scale"));
          scale.push_back(scale[0]);
          scale.push_back(scale[0]);
        } else {  // v2
          std::vector<float> scale_attr = ctx.Attr<std::vector<float>>("scale");
100 101 102 103
          if (scale_attr.size() > 0) {
            scale.resize(3, scale_attr[0]);
            std::copy(scale_attr.begin(), scale_attr.end(), scale.begin());
          }
104
        }
105
      }
106 107
      if (scale[0] > 0.0f && scale[1] > 0.0f && scale[2] > 0.0f) {
        int j = 0;
108
        std::vector<int64_t> in_dhw_vec = phi::vectorize(in_dhw_dims);
109 110
        std::transform(
            in_dhw_vec.begin(), in_dhw_vec.end(), out_dims.begin(),
111
            [&](int64_t i) -> int { return static_cast<int>(i * scale[j++]); });
112 113 114 115 116 117 118 119 120
      }
    }

    PADDLE_ENFORCE_GT(std::all_of(out_dims.begin(), out_dims.end(),
                                  [](int i) { return i > 0; }),
                      0, platform::errors::InvalidArgument(
                             "out_d, out_h, out_w of Op(interpolate) "
                             "should be greater than 0."));

121 122
    const std::vector<int64_t> nc_dims = {in_dims[0], in_dims[1]};
    out_dims.insert(out_dims.begin(), nc_dims.begin(), nc_dims.end());
123 124 125 126 127 128 129 130 131 132
    return out_dims;
  }

 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const auto* x = ctx.Input<Tensor>("X");
133
    auto* out = ctx.Output<Tensor>("Out");
134

135 136 137 138
    const auto interp_method = ctx.Attr<std::string>("interp_method");
    const dnnl::algorithm algo = (interp_method == "nearest")
                                     ? dnnl::algorithm::resampling_nearest
                                     : dnnl::algorithm::resampling_linear;
139

140
    const auto out_dims_vec = ComputeOutputShape(ctx);
141
    framework::DDim dim_out = phi::make_ddim(out_dims_vec);
142
    out->Resize(dim_out);
143

144
    InterpolateMKLDNNHandler<T> handler(algo, mkldnn_engine, ctx.GetPlace(), x,
145
                                        out);
146 147

    auto src_memory_p = handler.AcquireSrcMemory(x);
148
    auto dst_memory_p = handler.AcquireDstMemory(out);
149 150 151 152

    auto resampling_prim = handler.AcquireForwardPrimitive();
    const std::unordered_map<int, dnnl::memory> args = {
        {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};
153
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
154

155 156 157
    resampling_prim->execute(astream, args);
    astream.wait();

158
    out->set_mem_desc(dst_memory_p->get_desc());
159 160 161 162 163 164 165 166 167
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(nearest_interp, MKLDNN, ::paddle::platform::CPUPlace,
168 169 170
                   ops::InterpolateMKLDNNKernel<float>,
                   ops::InterpolateMKLDNNKernel<int8_t>,
                   ops::InterpolateMKLDNNKernel<uint8_t>);
171 172
REGISTER_OP_KERNEL(bilinear_interp, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::InterpolateMKLDNNKernel<float>);
173 174

REGISTER_OP_KERNEL(nearest_interp_v2, MKLDNN, ::paddle::platform::CPUPlace,
175
                   ops::InterpolateMKLDNNKernel<float>,
176
                   ops::InterpolateMKLDNNKernel<paddle::platform::bfloat16>,
177 178
                   ops::InterpolateMKLDNNKernel<int8_t>,
                   ops::InterpolateMKLDNNKernel<uint8_t>);
179 180
REGISTER_OP_KERNEL(bilinear_interp_v2, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::InterpolateMKLDNNKernel<float>);