test_multinomial_op.py 3.8 KB
Newer Older
P
pangyoki 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle
from op_test import OpTest
import numpy as np


class TestMultinomialOp(OpTest):
    def setUp(self):
        self.op_type = "multinomial"
        self.init_data()
        self.inputs = {"X": self.input_np}

29 30 31 32 33 34 35 36
    """
    def init_data(self):
        # input probability is a vector, and replacement is True
        self.input_np = np.random.rand(4)
        self.outputs = {"Out": np.zeros(100000).astype("int64")}
        self.attrs = {"num_samples": 100000, "replacement": True}
    """

P
pangyoki 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    def init_data(self):
        # input probability is a vector, and replacement is True
        self.input_np = np.random.rand(4)
        self.outputs = {"Out": np.zeros(100000).astype("int64")}
        self.attrs = {"num_samples": 100000, "replacement": True}

    def test_check_output(self):
        self.check_output_customized(self.verify_output)

    def sample_output(self, out):
        # count numbers of different categories
        sample_prob = np.unique(out, return_counts=True)[1].astype("float32")
        sample_prob /= sample_prob.sum()
        return sample_prob

    def verify_output(self, outs):
        # normalize the input to get the probability
        prob = self.input_np / self.input_np.sum(axis=-1, keepdims=True)
        sample_prob = self.sample_output(np.array(outs[0]))
56
        print("sample_prob: " + str(sample_prob) + "\nprob: " + str(prob))
P
pangyoki 已提交
57 58 59 60 61 62
        self.assertTrue(
            np.allclose(
                sample_prob, prob, rtol=0, atol=0.01),
            "sample_prob: " + str(sample_prob) + "\nprob: " + str(prob))


63
"""
P
pangyoki 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
class TestMultinomialOp2(TestMultinomialOp):
    def init_data(self):
        # input probability is a matrix
        self.input_np = np.random.rand(3, 4)
        self.outputs = {"Out": np.zeros((3, 100000)).astype("int64")}
        self.attrs = {"num_samples": 100000, "replacement": True}

    def sample_output(self, out):
        out_list = np.split(out, 3, axis=0)
        count_array = [0] * 3
        for i in range(3):
            count_array[i] = np.unique(
                out_list[i], return_counts=True)[1].astype("float32")
        sample_prob = np.stack(count_array, axis=0)
        sample_prob /= sample_prob.sum(axis=-1, keepdims=True)
        return sample_prob


class TestMultinomialOp3(TestMultinomialOp):
    def init_data(self):
        # replacement is False. number of samples must be less than number of categories.
        self.input_np = np.random.rand(1000)
        self.outputs = {"Out": np.zeros(100).astype("int64")}
        self.attrs = {"num_samples": 100, "replacement": False}

    def verify_output(self, outs):
        out = np.array(outs[0])
        unique_out = np.unique(out)
        self.assertEqual(
            len(unique_out), 100,
            "replacement is False. categories can't be sampled repeatedly")
95
"""
P
pangyoki 已提交
96 97 98 99 100 101 102 103 104 105 106
"""
class TestReplacementError(unittest.TestCase):
    def init_data(self):
        # replacement is False. if number of samples is larger than number of categories, raise error.
        self.input_np = np.random.rand(4)
        self.outputs = {"Out": np.zeros(10).astype("int64")}
        self.attrs = {"num_samples": 10, "replacement": False}
"""

if __name__ == "__main__":
    unittest.main()