layers.py 59.4 KB
Newer Older
Y
Yu Yang 已提交
1
import core
2 3
import proto.framework_pb2 as framework_pb2
from framework import OpProtoHolder, Variable, Program, Operator
4
from initializer import Constant, Normal, Xavier, Initializer
Q
Qiao Longfei 已提交
5
from paddle.v2.fluid.layer_helper import LayerHelper, unique_name
Y
Yu Yang 已提交
6
import re
7
import cStringIO
Y
Yu Yang 已提交
8
from param_attr import ParamAttr
Y
Yu Yang 已提交
9

Q
QI JUN 已提交
10
__all__ = [
Y
Yu Yang 已提交
11
    'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat',
D
dzhwinter 已提交
12
    'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'sums', 'cos_sim',
13
    'batch_norm', 'accuracy', 'split_lod_tensor'
Q
QI JUN 已提交
14
]
Y
Yu Yang 已提交
15 16


F
fengjiayi 已提交
17 18
def fc(input,
       size,
C
chengduoZH 已提交
19
       num_flatten_dims=1,
F
fengjiayi 已提交
20
       param_attr=None,
Q
QI JUN 已提交
21
       bias_attr=None,
F
fengjiayi 已提交
22
       act=None,
C
chengduoZH 已提交
23
       name=None,
24 25
       main_program=None,
       startup_program=None):
26 27 28 29 30 31
    """
    Fully Connected Layer.

    Args:
       input: The input tensor to the function
       size: The size of the layer
C
chengduoZH 已提交
32
       num_flatten_dims: Number of columns in input
33
       param_attr: The parameters/weights to the FC Layer
34 35
       param_initializer: Initializer used for the weight/parameter.
       If None, XavierInitializer() is used
36
       bias_attr: The bias parameter for the FC layer
37 38
       bias_initializer: Initializer used for the bias.
       If None, then ConstantInitializer() is used
39
       act: Activation to be applied to the output of FC layer
C
chengduoZH 已提交
40
       name: Name/alias of the function
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in multiple inputs and performs the Fully Connected
    function (linear transformation) on top of each of them.
    So for input x, the output will be : Wx + b. Where W is the parameter,
    b the bias and x is the input.

    The function also applies an activation (non-linearity) on top of the
    output, if activation is passed in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
56 57 58 59 60 61 62
    helper = LayerHelper('fc', **locals())

    dtype = helper.input_dtype()

    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
63 64 65
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
Yu Yang 已提交
66
        w = helper.create_parameter(
Y
Yu Yang 已提交
67
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Y
Yu Yang 已提交
68 69 70 71 72 73 74 75
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
Y
Yu Yang 已提交
76 77
            attrs={'x_num_col_dims': num_flatten_dims,
                   'y_num_col_dims': 1})
Y
Yu Yang 已提交
78 79 80 81 82 83 84 85 86 87
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
Y
Yu Yang 已提交
88
    pre_activation = helper.append_bias_op(pre_bias)
Y
Yu Yang 已提交
89 90 91 92
    # add activation
    return helper.append_activation(pre_activation)


Q
QI JUN 已提交
93 94
def embedding(input,
              size,
95
              is_sparse=False,
Q
QI JUN 已提交
96
              param_attr=None,
F
fengjiayi 已提交
97
              dtype='float32',
98 99
              main_program=None,
              startup_program=None):
100 101 102 103
    """
    Embedding Layer.

    Args:
Y
Yu Yang 已提交
104
       param_initializer:
105 106 107 108
       input: The input to the function
       size: The size of the layer
       is_sparse: A flag that decleares whether the input is sparse
       param_attr: Parameters for this layer
F
fengjiayi 已提交
109
       dtype: The type of data : float32, float_16, int etc
110 111 112 113 114 115 116 117 118 119 120
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in the input (which is a vector of IDs) and
    performs a lookup in the lookup_table using these IDs, to result into
    the embedding of each ID in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Q
Qiao Longfei 已提交
121

Q
QI JUN 已提交
122 123
    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
Y
Yu Yang 已提交
124
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
F
fengjiayi 已提交
125
    tmp = helper.create_tmp_variable(dtype)
Q
QI JUN 已提交
126 127 128 129
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
130 131
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
Q
QI JUN 已提交
132 133 134
    return tmp


Q
QI JUN 已提交
135 136 137 138 139 140 141 142 143 144
# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
F
fengjiayi 已提交
145
                 dtype='float32',
Q
QI JUN 已提交
146 147 148 149 150
                 main_program=None,
                 startup_program=None):
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
F
fengjiayi 已提交
151
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
Q
QI JUN 已提交
152 153 154 155
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
Y
Yu Yang 已提交
156
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
Q
QI JUN 已提交
157

F
fengjiayi 已提交
158 159 160 161
    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Q
QI JUN 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


F
fengjiayi 已提交
184 185
def data(name,
         shape,
C
chengduoZH 已提交
186
         append_batch_size=True,
F
fengjiayi 已提交
187
         dtype='float32',
F
fengjiayi 已提交
188
         type=core.VarDesc.VarType.LOD_TENSOR,
189
         main_program=None,
190 191
         startup_program=None,
         stop_gradient=True):
192 193 194 195 196 197
    """
    Data Layer.

    Args:
       name: The name/alias of the function
       shape: Tuple declaring the shape.
C
chengduoZH 已提交
198
       append_batch_size: Whether or not to append the data as a batch.
F
fengjiayi 已提交
199
       dtype: The type of data : float32, float_16, int etc
200 201 202 203 204 205 206 207 208 209 210 211 212 213
       type: The output type. By default it is LOD_TENSOR.
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program
       stop_gradient: A boolean that mentions whether gradient should flow.

    This function takes in input and based on whether data has
    to be returned back as a minibatch, it creates the global variable using
    the helper functions. The global variables can be accessed by all the
    following operations and layers in the graph.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
214
    helper = LayerHelper('data', **locals())
Y
Yu Yang 已提交
215 216 217 218 219 220 221 222
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

Y
Yu Yang 已提交
223 224
    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1
Y
Yu Yang 已提交
225

Y
Yu Yang 已提交
226
    return helper.create_global_variable(
227 228
        name=name,
        shape=shape,
F
fengjiayi 已提交
229
        dtype=dtype,
230 231
        type=type,
        stop_gradient=stop_gradient)
Y
Yu Yang 已提交
232 233


Y
Yu Yang 已提交
234
def create_tensor(dtype, name=None, main_program=None, startup_program=None):
Y
Yu Yang 已提交
235 236
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(name=helper.name, dtype=dtype)
Y
Yu Yang 已提交
237 238 239


def _convert_(name):
240 241 242 243 244 245 246 247 248 249 250
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
Y
Yu Yang 已提交
251 252 253 254
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


255 256 257
def _generate_doc_string_(op_proto):
    """
    Generate docstring by OpProto
X
xuwei06 已提交
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

    def _type_to_str_(tp):
        return framework_pb2.AttrType.Name(tp)

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

    buf = cStringIO.StringIO()
    buf.write(op_proto.comment)
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
        line_begin = '    {0}: '.format(_convert_(each_input.name))
        buf.write(line_begin)
        buf.write(each_input.comment)
        buf.write('\n')
        buf.write(' ' * len(line_begin))
        buf.write('Duplicable: ')
        buf.write(str(each_input.duplicable))
        buf.write('  Optional: ')
        buf.write(str(each_input.dispensable))
        buf.write('\n')

    for each_attr in op_proto.attrs:
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
        buf.write(each_attr.comment)
        buf.write('\n')

    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
        buf.write(each_opt.comment)

    return buf.getvalue()


Y
Yu Yang 已提交
307
def _create_op_func_(op_type):
308 309 310 311 312 313 314 315 316 317
    """
    Create an Operator for a Function.

    Args:
       op_type: The name of the operator to be created

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
Y
Yu Yang 已提交
318
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
319 320 321 322 323 324
    not_intermediate_outputs = \
        filter(lambda output: not output.intermediate, op_proto.outputs)
    intermediate_outputs = \
        filter(lambda output: output.intermediate, op_proto.outputs)

    if len(not_intermediate_outputs) != 1:
325 326
        raise ValueError("Only one non intermediate output operator can be",
                         "automatically generated")
Y
Yu Yang 已提交
327

328
    if not_intermediate_outputs[0].duplicable:
Y
Yu Yang 已提交
329
        raise ValueError(
330
            "Only non duplicable op can be automatically generated")
Y
Yu Yang 已提交
331

332 333
    for output in intermediate_outputs:
        if output.duplicable:
334 335
            raise ValueError("The op can be automatically generated only when ",
                             "all intermediate ops are not duplicable")
336 337 338

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]
Y
Yu Yang 已提交
339

F
fengjiayi 已提交
340
    def infer_and_check_dtype(op_proto, **kwargs):
341
        """
F
fengjiayi 已提交
342
        This function performs the sanity check for dtype and
343 344
        instance type.
        """
Y
Yu Yang 已提交
345 346 347 348 349 350 351 352 353 354 355 356
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
F
fengjiayi 已提交
357 358
                    dtype = each.dtype
                elif dtype != each.dtype:
Y
Yu Yang 已提交
359 360
                    raise ValueError(
                        "operator {0} must input same dtype".format(op_type))
Y
Yang Yang(Tony) 已提交
361 362 363 364 365 366

        return dtype

    def func(**kwargs):
        helper = LayerHelper(op_type, **kwargs)

F
fengjiayi 已提交
367
        dtype = infer_and_check_dtype(op_proto, **kwargs)
Y
Yang Yang(Tony) 已提交
368 369 370 371 372 373 374

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
375 376
            inputs[ipt.name] = val

377
        outputs = dict()
Y
Yu Yang 已提交
378
        out = helper.create_tmp_variable(dtype=dtype)
379 380 381
        outputs[o_name] = [out]
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
Y
Yu Yang 已提交
382
        helper.append_op(
383
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
Q
Qiao Longfei 已提交
384
        return helper.append_activation(out)
Y
Yu Yang 已提交
385 386 387

    func.__name__ = op_type
    globals()[op_type] = func
388
    func.__doc__ = _generate_doc_string_(op_proto)
Y
Yu Yang 已提交
389 390 391 392 393
    global __all__
    __all__.append(op_type)


_create_op_func_('mean')
Y
Yu Yang 已提交
394
_create_op_func_('mul')
Q
Qiao Longfei 已提交
395
_create_op_func_('elementwise_add')
Y
Yu Yang 已提交
396
_create_op_func_('elementwise_div')
397
_create_op_func_('dropout')
Q
Qiao Longfei 已提交
398
_create_op_func_('reshape')
Y
Yu Yang 已提交
399 400
_create_op_func_('sigmoid')
_create_op_func_('scale')
Y
Yang Yang(Tony) 已提交
401 402 403 404
_create_op_func_('reshape')
_create_op_func_('transpose')


F
fengjiayi 已提交
405
def cast(x, dtype, main_program=None):
406
    """
F
fengjiayi 已提交
407 408
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
409
    """
Y
Yu Yang 已提交
410
    helper = LayerHelper('cast', **locals())
F
fengjiayi 已提交
411
    out = helper.create_tmp_variable(dtype=dtype)
Y
Yu Yang 已提交
412 413 414 415
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
F
fengjiayi 已提交
416 417
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
Y
Yu Yang 已提交
418 419 420
    return out


421
def concat(input, axis, main_program=None, startup_program=None):
422 423 424 425
    """
    This function concats the input along the axis mentioned
    and returns that as the output.
    """
Q
QI JUN 已提交
426
    helper = LayerHelper('concat', **locals())
D
dzhwinter 已提交
427
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Q
QI JUN 已提交
428 429 430 431 432 433 434 435
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


Y
Yu Yang 已提交
436
def sums(input, out=None, main_program=None, startup_program=None):
437 438 439 440
    """
    This function takes in the input and performs the sum operation on it
    and returns that as the output.
    """
D
dzhwinter 已提交
441
    helper = LayerHelper('sum', **locals())
Y
Yu Yang 已提交
442 443
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yu Yang 已提交
444
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
D
dzhwinter 已提交
445 446 447
    return out


Q
Qiao Longfei 已提交
448 449 450 451 452 453 454 455 456 457
def linear_chain_crf(input,
                     label,
                     param_attr=None,
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
Y
Yu Yang 已提交
458
        dtype=helper.input_dtype())
Q
Qiao Longfei 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
Yu Yang 已提交
478
def assign(input, output, main_program=None, startup_program=None):
Y
Yu Yang 已提交
479 480 481 482 483 484 485 486 487
    helper = LayerHelper('assign', **locals())
    helper.append_op(
        type='scale',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs={'scale': 1.0})
    return output


488 489
def split_lod_tensor(input,
                     mask,
Y
Yu Yang 已提交
490
                     level=0,
491 492 493
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
494 495
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


def merge_lod_tensor(in_true,
                     in_false,
                     x,
                     mask,
Y
Yu Yang 已提交
512
                     level=0,
513 514 515
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
516
    out = helper.create_tmp_variable(dtype=in_true.dtype)
517 518 519 520 521 522 523 524 525 526 527
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


528
def cos_sim(X, Y, **kwargs):
529 530 531 532
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
533
    helper = LayerHelper('cos_sim', **kwargs)
F
fengjiayi 已提交
534 535 536
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
D
dzhwinter 已提交
537 538 539 540 541 542 543
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
544
    return out
D
dzhwinter 已提交
545 546


Y
Yu Yang 已提交
547
def cross_entropy(input, label, **kwargs):
548 549 550
    """
    This function computes cross_entropy using the input and label.
    """
Y
Yu Yang 已提交
551
    helper = LayerHelper('cross_entropy', **kwargs)
F
fengjiayi 已提交
552
    out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
553 554 555 556 557 558 559 560 561 562
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
563 564 565 566
    """
    This functions returns the squared error cost using the input and label.
    The output is appending the op to do the above.
    """
Y
Yu Yang 已提交
567
    helper = LayerHelper('square_error_cost', **kwargs)
F
fengjiayi 已提交
568
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
569 570 571 572 573 574
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

F
fengjiayi 已提交
575
    square_out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
576
    helper.append_op(
Q
QI JUN 已提交
577
        type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]})
Y
Yu Yang 已提交
578
    return square_out
579 580


Y
Yu Yang 已提交
581
def accuracy(input, label, k=1, correct=None, total=None, **kwargs):
582 583 584 585
    """
    This function computes the accuracy using the input and label.
    The output is the top_k inputs and their indices.
    """
F
fengjiayi 已提交
586
    helper = LayerHelper("accuracy", **kwargs)
F
fengjiayi 已提交
587
    topk_out = helper.create_tmp_variable(dtype=input.dtype)
F
fengjiayi 已提交
588 589 590 591 592 593 594
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
D
Dong Zhihong 已提交
595
    acc_out = helper.create_tmp_variable(dtype="float32")
Y
Yu Yang 已提交
596 597 598 599
    if correct is None:
        correct = helper.create_tmp_variable(dtype="int64")
    if total is None:
        total = helper.create_tmp_variable(dtype="int64")
F
fengjiayi 已提交
600 601
    helper.append_op(
        type="accuracy",
武毅 已提交
602 603 604 605 606
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
D
Dong Zhihong 已提交
607 608 609 610 611
        outputs={
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total],
        })
F
fengjiayi 已提交
612 613 614
    return acc_out


D
dzhwinter 已提交
615 616 617
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
618
                  filter_stride=1,
D
dzhwinter 已提交
619 620 621
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduoZH 已提交
622
                  act=None,
623 624
                  main_program=None,
                  startup_program=None):
625 626 627 628 629
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """
630

D
dzhwinter 已提交
631 632 633 634 635 636
    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
D
dzhwinter 已提交
637
    filter_shape = [filter_size * input.shape[1], num_filters]
D
dzhwinter 已提交
638
    filter = helper.create_parameter(
Y
Yu Yang 已提交
639
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
D
dzhwinter 已提交
640 641 642 643 644 645
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
D
dzhwinter 已提交
646
            'Filter': [filter],
D
dzhwinter 已提交
647 648 649
        },
        outputs={"Out": pre_bias},
        attrs={
650
            'contextStride': filter_stride,
651
            'contextStart': -int(filter_size / 2),
652
            'contextLength': filter_size
D
dzhwinter 已提交
653
        })
Y
Yu Yang 已提交
654
    pre_act = helper.append_bias_op(pre_bias)
D
dzhwinter 已提交
655 656 657
    return helper.append_activation(pre_act)


F
fengjiayi 已提交
658 659
def conv2d(input,
           num_filters,
C
chengduoZH 已提交
660
           filter_size,
F
fengjiayi 已提交
661 662
           stride=[1, 1],
           padding=None,
C
chengduoZH 已提交
663
           groups=None,
F
fengjiayi 已提交
664
           param_attr=None,
C
chengduoZH 已提交
665 666 667
           bias_attr=None,
           act=None,
           name=None,
668 669
           main_program=None,
           startup_program=None):
670 671 672 673 674 675 676
    """
    This function creates the op for a 2-dimensional Convolution.
    This is performed using the parameters of filters(size, dimensionality etc)
    , stride and other configurations for a Convolution operation.
    This funciton can also append an activation on top of the
    conv-2d output, if mentioned in the input parameters.
    """
677

678 679 680 681 682 683 684
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
C
chengduoZH 已提交
685
        if num_channels % groups != 0:
686 687 688
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

F
fengjiayi 已提交
689 690 691 692 693 694 695
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]

696 697
    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size
698

Y
Yu Yang 已提交
699 700 701
    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)
702

703
    filter = helper.create_parameter(
704 705 706
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
Y
Yu Yang 已提交
707 708
        default_initializer=_get_default_param_initializer())

709 710 711 712 713 714 715 716 717 718 719 720 721
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='conv2d',
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={'strides': stride,
               'paddings': padding,
               'groups': groups})

Y
Yu Yang 已提交
722
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
723 724

    return helper.append_activation(pre_act)
F
fengjiayi 已提交
725 726


D
dzhwinter 已提交
727
def sequence_pool(input, pool_type, **kwargs):
728 729 730 731 732
    """
    This function add the operator for sequence pooling.
    This is applied on top of the input using pool_type mentioned
    in the parameters.
    """
733
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
D
dzhwinter 已提交
734 735
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
D
dangqingqing 已提交
736
    max_index = helper.create_tmp_variable(dtype)
D
dzhwinter 已提交
737 738 739

    helper.append_op(
        type="sequence_pool",
D
dangqingqing 已提交
740 741 742
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
D
dzhwinter 已提交
743
        attrs={"pooltype": pool_type.upper()})
D
dzhwinter 已提交
744 745 746 747

    return pool_out


F
fengjiayi 已提交
748 749 750 751 752 753
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=[1, 1],
           pool_padding=[0, 0],
           global_pooling=False,
754 755
           main_program=None,
           startup_program=None):
756 757 758 759
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
F
fengjiayi 已提交
760 761 762 763 764 765 766 767 768 769 770
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]

D
dzhwinter 已提交
771
    helper = LayerHelper('pool2d', **locals())
F
fengjiayi 已提交
772 773 774 775 776 777 778 779
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
C
chengduoZH 已提交
780
            "pooling_type": pool_type,
F
fengjiayi 已提交
781
            "ksize": pool_size,
C
chengduoZH 已提交
782
            "global_pooling": global_pooling,
F
fengjiayi 已提交
783 784 785 786 787
            "strides": pool_stride,
            "paddings": pool_padding
        })

    return pool_out
Y
Yu Yang 已提交
788 789


Q
Qiao Longfei 已提交
790 791 792 793
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
794
               epsilon=1e-05,
Q
Qiao Longfei 已提交
795 796 797
               param_attr=None,
               bias_attr=None,
               data_layout='NCHW',
798 799
               main_program=None,
               startup_program=None):
800 801 802 803
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
Q
Qiao Longfei 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
820 821 822
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
Y
Yu Yang 已提交
823 824
        default_initializer=Constant(1.0))

Q
Qiao Longfei 已提交
825
    bias = helper.create_parameter(
Y
Yu Yang 已提交
826
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=True)
827 828

    mean = helper.create_global_variable(
F
fengjiayi 已提交
829
        dtype=input.dtype, shape=param_shape, persistable=True)
830
    helper.set_variable_initializer(var=mean, initializer=Constant(0.0))
831 832

    variance = helper.create_global_variable(
F
fengjiayi 已提交
833
        dtype=input.dtype, shape=param_shape, persistable=True)
834
    helper.set_variable_initializer(var=variance, initializer=Constant(1.0))
Q
Qiao Longfei 已提交
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_tmp_variable(dtype)
    saved_variance = helper.create_tmp_variable(dtype)

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


869 870
def beam_search_decode(ids, scores, main_program=None, startup_program=None):
    helper = LayerHelper('beam_search_decode', **locals())
F
fengjiayi 已提交
871 872
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)
873 874 875 876 877 878 879 880 881 882 883 884 885

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


Y
Yu Yang 已提交
886 887
class BlockGuard(object):
    """
888 889 890 891
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
892 893
    """

894 895
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
896
            raise TypeError("BlockGuard takes a program")
897
        self.main_program = main_program
Y
Yu Yang 已提交
898 899

    def __enter__(self):
900
        self.main_program.create_block()
Y
Yu Yang 已提交
901 902

    def __exit__(self, exc_type, exc_val, exc_tb):
903
        self.main_program.rollback()
Y
Yu Yang 已提交
904 905 906 907 908 909
        if exc_type is not None:
            return False  # re-raise exception
        return True


class StaticRNNGuard(BlockGuard):
910 911 912 913 914 915
    """
    StaticRNNGuard class.

    StaticRNNGuard class is used to create a StaticRNN block in a program.
    """

Y
Yu Yang 已提交
916 917
    def __init__(self, rnn):
        if not isinstance(rnn, StaticRNN):
Y
Yang Yang(Tony) 已提交
918
            raise TypeError("StaticRNNGuard takes a StaticRNN")
919
        super(StaticRNNGuard, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
920 921 922 923 924 925 926
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
        return super(StaticRNNGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
927 928
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
929 930 931 932 933 934 935
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
        self.rnn.complete_rnn_op()
        return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb)


class StaticRNNMemoryLink(object):
    """
936 937 938 939 940 941 942 943 944 945 946 947
    StaticRNNMemoryLink class.

    Args:
        init: the initial variable for Memory
        init: Variable
        pre_mem: the memory variable in previous time step
        pre_mem: Variable
        mem: the memory variable in current time step
        mem: Variable

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
Yu Yang 已提交
948 949 950 951 952 953 954 955 956
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
957 958 959 960 961 962
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
963 964 965 966
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

967 968 969
    def __init__(self, name=None, main_program=None):
        self.helper = LayerHelper(
            "static_rnn", name=name, main_program=main_program)
Y
Yu Yang 已提交
970 971 972 973 974 975 976 977 978 979 980 981 982 983
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
        return StaticRNNGuard(self)

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

984 985 986 987 988 989 990
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
991 992 993 994 995 996 997 998 999
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
1000 1001
        self._assert_in_rnn_block_('memory')
        if init is None:
1002
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
1003
                raise ValueError(
1004
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
1005 1006 1007
            parent_block = self.parent_block()
            var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
            boot_var = parent_block.create_var(
1008 1009
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
1010
                dtype=batch_ref.dtype,
1011
                persistable=False)
Y
Yu Yang 已提交
1012 1013

            parent_block.append_op(
1014 1015
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
1016 1017 1018
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
1019
                    'shape': boot_var.shape,
F
fengjiayi 已提交
1020
                    'dtype': boot_var.dtype,
1021 1022
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
1023 1024 1025 1026 1027 1028
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
                name=unique_name("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
1029
                dtype=init.dtype,
Y
Yu Yang 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
1040 1041
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
1042 1043 1044
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
1045
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
1046 1047 1048 1049 1050 1051 1052 1053
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
1054
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
1055 1056 1057 1058
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
1059
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
1060

Y
Yu Yang 已提交
1061
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
1062 1063
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
1064
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
1078
        prog = self.helper.main_program
Y
Yu Yang 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def complete_rnn_op(self):
1095 1096
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
1136
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
1137 1138 1139 1140 1141

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
1142
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
                'step_block': rnn_block
            })
Y
Yu Yang 已提交
1160 1161


Y
Yang Yang(Tony) 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

    def __init__(self, cond, name=None, main_program=None):
        self.helper = LayerHelper("while", name=name, main_program=main_program)
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
F
fengjiayi 已提交
1192
        if cond.dtype != core.DataType.BOOL:
Y
Yang Yang(Tony) 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
                'X': [parent_block.var(x_name) for x_name in x_name_list],
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
            attrs={'step_block': while_block})


Y
Yang Yang(Tony) 已提交
1238 1239 1240 1241 1242 1243
def lstm(x,
         c_pre_init,
         hidden_dim,
         forget_bias=None,
         main_program=None,
         startup_program=None):
1244 1245 1246 1247
    """
    This function helps create an operator for the LSTM (Long Short Term
    Memory) cell that can be used inside an RNN.
    """
Y
Yang Yang(Tony) 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
    helper = LayerHelper('lstm_unit', **locals())
    rnn = StaticRNN()
    with rnn.step():
        c_pre = rnn.memory(init=c_pre_init)
        x_t = rnn.step_input(x)

        before_fc = concat(
            input=[x_t, c_pre],
            axis=1,
            main_program=main_program,
            startup_program=startup_program)
        after_fc = fc(input=before_fc,
                      size=hidden_dim * 4,
                      main_program=main_program,
                      startup_program=startup_program)

F
fengjiayi 已提交
1264 1265 1266
        dtype = x.dtype
        c = helper.create_tmp_variable(dtype)
        h = helper.create_tmp_variable(dtype)
Y
Yang Yang(Tony) 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281

        helper.append_op(
            type='lstm_unit',
            inputs={"X": after_fc,
                    "C_prev": c_pre},
            outputs={"C": c,
                     "H": h},
            attrs={"forget_bias": forget_bias})

        rnn.update_memory(c_pre, c)
        rnn.output(h)

    return rnn()


1282
def lod_rank_table(x, level=0, main_program=None):
1283 1284 1285 1286
    """
    This function creates an operator for creating a LOD_RANK_TABLE
    using the input x.
    """
Y
Yu Yang 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name("lod_rank_table"))
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
1297 1298


F
fengjiayi 已提交
1299 1300
def max_sequence_len(rank_table, main_program=None):
    """
Y
Yu Yang 已提交
1301
    This function creates an operator to calculate the length of
F
fengjiayi 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    max seqence through input rank_table(should be a lod_rank_table)
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


Y
Yu Yang 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
def topk(input, k, main_program=None, startup_program=None):
    helper = LayerHelper('topk', **locals())
    topk_out = helper.create_tmp_variable(dtype=input.data_type)
    topk_indices = helper.create_tmp_variable(dtype='int64')
    helper.append_op(
        type='top_k',
        inputs={'X': [input]},
        outputs={'Out': [topk_out],
                 'Indices': [topk_indices]},
        attrs={'k': k})
    return topk_out, topk_indices


1326
def lod_tensor_to_array(x, table, main_program=None):
1327 1328 1329 1330
    """
    This function creates an operator to convert an LOD_Tensor to
    an array.
    """
1331 1332 1333
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
        name=unique_name("lod_tensor_to_array"),
1334
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1335
        dtype=x.dtype)
1336 1337 1338 1339 1340 1341 1342 1343 1344
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


def array_to_lod_tensor(x, table, main_program=None):
1345 1346 1347 1348
    """
    This function creates an operator to convert an array to a
    LOD_Tensor.
    """
1349
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
1350
    tmp = helper.create_tmp_variable(dtype=x.dtype)
1351 1352 1353 1354 1355 1356 1357 1358
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


Y
Yu Yang 已提交
1359 1360 1361 1362 1363 1364
def fill_constant(shape,
                  dtype,
                  value,
                  out=None,
                  main_program=None,
                  startup_program=None):
1365 1366
    """
    This function creates a tensor , with shape as mentioned in the input and
F
fengjiayi 已提交
1367
    specified dtype and fills this up with a constant value that
1368 1369
    comes in the input. It also sets the stop_gradient to be True.
    """
Y
Yang Yu 已提交
1370
    helper = LayerHelper("fill_constant", **locals())
Y
Yu Yang 已提交
1371 1372
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
Y
Yu Yang 已提交
1373 1374 1375 1376
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
F
fengjiayi 已提交
1377 1378 1379
        attrs={'shape': shape,
               'dtype': out.dtype,
               'value': float(value)})
Y
Yu Yang 已提交
1380 1381 1382 1383
    out.stop_gradient = True
    return out


Y
Yu Yang 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
                                  output_dim_idx=0,
                                  main_program=None,
                                  startup_program=None):
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
F
fengjiayi 已提交
1400
            'dtype': out.dtype,
Y
Yu Yang 已提交
1401 1402 1403 1404 1405 1406 1407 1408
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


Y
Yu Yang 已提交
1409
def ones(shape, dtype, main_program=None):
1410 1411 1412 1413
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 1.0.
    """
Y
Yu Yang 已提交
1414 1415 1416 1417
    return fill_constant(value=1.0, **locals())


def zeros(shape, dtype, main_program=None):
1418 1419 1420 1421
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 0.0.
    """
Y
Yu Yang 已提交
1422 1423 1424
    return fill_constant(value=0.0, **locals())


1425
def increment(x, value=1.0, in_place=True, main_program=None):
1426 1427 1428 1429 1430
    """
    This function creates an operator to increment each value in the input
    `x` by an amount: `value` as mentioned in the input parameter. This
    operation is performed in-place by default.
    """
Y
Yu Yang 已提交
1431
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1432
    if not in_place:
F
fengjiayi 已提交
1433
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1434 1435
    else:
        out = x
Y
Yu Yang 已提交
1436 1437 1438
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
1439
        outputs={'Out': [out]},
Y
Yu Yang 已提交
1440
        attrs={'step': value})
Y
Yang Yu 已提交
1441
    return out
Y
Yu Yang 已提交
1442 1443 1444


def array_write(x, i, array=None, main_program=None):
1445 1446 1447 1448
    """
    This function creates an operator to write the data out as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1449 1450 1451 1452 1453
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1454
            dtype=x.dtype)
Y
Yu Yang 已提交
1455 1456 1457 1458 1459 1460 1461 1462
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


Y
Yang Yang(Tony) 已提交
1463 1464 1465 1466 1467 1468 1469 1470
def create_array(dtype, main_program=None):
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
Yu Yang 已提交
1471
def less_than(x, y, cond=None, main_program=None, **ignored):
Y
Yang Yang(Tony) 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


Y
Yu Yang 已提交
1483
def array_read(array, i, main_program=None):
1484 1485 1486 1487
    """
    This function creates an operator to read the data in as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1488 1489 1490 1491 1492
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
1493
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
1494 1495 1496 1497 1498 1499
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1500 1501 1502


def shrink_memory(x, i, table, main_program=None):
1503 1504 1505 1506
    """
    This function creates an operator to shrink_rnn_memory using the RankTable
    as mentioned in the input parameter.
    """
Y
Yang Yu 已提交
1507
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
1508
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
1509
    helper.append_op(
Y
Yang Yu 已提交
1510
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1511 1512 1513 1514 1515 1516
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1517 1518 1519


def array_length(array, main_program=None):
1520 1521 1522 1523
    """
    This function creates an operator to find the length of the
    LOD_TENSOR_ARRAY.
    """
Y
Yang Yu 已提交
1524 1525 1526 1527 1528 1529
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1530 1531


1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
                     padding=None,
                     stride=None,
                     param_attr=None,
                     main_program=None,
                     startup_program=None):
    """
    The transpose of conv2d layer.
Y
Yu Yang 已提交
1543

1544
    This layer is also known as deconvolution layer.
Y
Yu Yang 已提交
1545

1546 1547 1548 1549 1550
    Args:
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
Y
Yu Yang 已提交
1551
            tuple, it must contain two integers, (image_H, image_W). This
1552 1553 1554 1555 1556 1557
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.  None if use output size to
            calculate filter_size
        padding(int|tuple): The padding size. If padding is a tuple, it must
Y
Yu Yang 已提交
1558
            contain two integers, (padding_H, padding_W). Otherwise, the
1559 1560 1561 1562 1563 1564
            padding_H = padding_W = padding.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride.
        param_attr: Parameter Attribute.
        main_program(Program): the main program
Y
Yu Yang 已提交
1565
        startup_program(Program): the startup program
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

    Returns:
        Variable: Output image.
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

    op_attr = dict()

    if isinstance(padding, int):
        op_attr['paddings'] = [padding, padding]
    elif padding is not None:
        op_attr['paddings'] = padding

    if isinstance(stride, int):
        op_attr['strides'] = stride
    elif stride is not None:
        op_attr['strides'] = stride

    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        padding = op_attr.get('paddings', [0, 0])
        stride = op_attr.get('strides', [1, 1])

        h_in = input.shape[2]
        w_in = input.shape[3]
        filter_size_h = output_size[0] - (h_in - 1) * stride[0] + 2 * padding[0]
        filter_size_w = output_size[1] - (w_in - 1) * stride[1] + 2 * padding[1]
        filter_size = [filter_size_h, filter_size_w]
    elif isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]

    filter_shape = [input_channel, num_filters] + filter_size
    img_filter = helper.create_parameter(
Y
Yu Yang 已提交
1606
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
1607 1608 1609 1610 1611 1612 1613 1614

    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': out},
        attrs=op_attr)
Y
Yu Yang 已提交
1615

1616 1617 1618
    return out


Y
Yu Yang 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
class ConditionalBlockGuard(BlockGuard):
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yu Yang 已提交
1636 1637 1638 1639 1640
    def __init__(self,
                 inputs,
                 name=None,
                 main_program=None,
                 startup_program=None):
Y
Yu Yang 已提交
1641 1642 1643 1644 1645
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
        self.helper = LayerHelper(
Y
Yu Yang 已提交
1646 1647 1648 1649
            'conditional_block',
            name=name,
            main_program=main_program,
            startup_program=startup_program)
Y
Yu Yang 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
            parent_block.var(each_name) for each_name in params
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
            if var_name not in intermediate
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
            attrs={'block': inside_block})
Y
Yu Yang 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

    def __init__(self, cond, name=None, main_program=None,
                 startup_program=None):
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
        self.helper = LayerHelper(
            'ifelse',
            name=name,
            main_program=main_program,
            startup_program=startup_program)
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
            parent_block = self.parent_block()
            out_true = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1757
                dtype=x.dtype)
Y
Yu Yang 已提交
1758 1759 1760

            out_false = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1761
                dtype=x.dtype)
Y
Yu Yang 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

    def parent_block(self):
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
        parent_block = self.parent_block()
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
                name=unique_name("_".join([self.helper.name, 'output'])),
F
fengjiayi 已提交
1803
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
            out_table.append(outside_out)

            # assign local var to outside
            assign(
                input=each_out,
                output=outside_out,
                main_program=self.helper.main_program,
                startup_program=self.helper.startup_program)

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
        false_len, true_len = map(len, self.output_table)
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
                    level=0,
                    main_program=self.helper.main_program,
                    startup_program=self.helper.startup_program))
        return rlist