test_pass_builder.py 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import paddle.fluid as fluid
import paddle.fluid.core as core
19
from paddle.fluid import compiler
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
import numpy as np
import unittest
import os
import sys
import math


def simple_fc_net():
    img = fluid.layers.data(name='image', shape=[784], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    hidden = img
    for _ in range(4):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            act='tanh',
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))
    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    return loss


class TestPassBuilder(unittest.TestCase):
    def check_network_convergence(self, use_cuda, build_strategy=None):
        os.environ['CPU_NUM'] = str(4)
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = simple_fc_net()
            test_program = main.clone(for_test=True)

            opt = fluid.optimizer.SGD(learning_rate=0.001)
            opt.minimize(loss)

            batch_size = 32
            image = np.random.normal(size=(batch_size, 784)).astype('float32')
            label = np.random.randint(0, 10, (batch_size, 1), dtype="int64")

            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup)
            feed_dict = {'image': image, 'label': label}

65 66 67
            train_cp = compiler.CompiledProgram(main).with_data_parallel(
                loss_name=loss.name, build_strategy=build_strategy)
            test_cp = compiler.CompiledProgram(test_program).with_data_parallel(
68
                loss_name=loss.name,
69 70
                build_strategy=build_strategy,
                share_vars_from=train_cp)
71 72

            for i in range(5):
73 74 75 76 77 78 79
                _ = exe.run(train_cp, fetch_list=[loss.name], feed=feed_dict)
                test_loss, = exe.run(test_cp,
                                     fetch_list=[loss.name],
                                     feed=feed_dict)
                train_loss = exe.run(train_cp,
                                     fetch_list=[loss.name],
                                     feed=feed_dict)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

                avg_test_loss_val = np.array(test_loss).mean()
                if math.isnan(float(avg_test_loss_val)):
                    sys.exit("got NaN loss, testing failed.")

                avg_train_loss_val = np.array(train_loss).mean()
                if math.isnan(float(avg_train_loss_val)):
                    sys.exit("got NaN loss, training failed.")

                self.assertTrue(
                    np.allclose(
                        train_loss, test_loss, atol=1e-8),
                    "Train loss: " + str(train_loss) + "\n Test loss:" +
                    str(test_loss))

    def test_parallel_testing_with_new_strategy(self):
        build_strategy = fluid.BuildStrategy()
X
Xin Pan 已提交
97 98
        self.assertFalse(build_strategy.fuse_elewise_add_act_ops)
        build_strategy.fuse_elewise_add_act_ops = True
99
        pass_builder = build_strategy._finalize_strategy_and_create_passes()
X
Xin Pan 已提交
100 101 102
        self.assertTrue("fuse_elewise_add_act_pass" in
                        [p.type() for p in pass_builder.all_passes()])

X
fix  
Xin Pan 已提交
103 104
        origin_len = len(pass_builder.all_passes())

105
        viz_pass = pass_builder.append_pass("graph_viz_pass")
X
fix  
Xin Pan 已提交
106 107 108 109 110 111
        self.assertEqual(origin_len + 1, len(pass_builder.all_passes()))

        pass_builder.insert_pass(
            len(pass_builder.all_passes()), "graph_viz_pass")
        self.assertEqual(origin_len + 2, len(pass_builder.all_passes()))

112
        pass_builder.remove_pass(len(pass_builder.all_passes()) - 1)
X
fix  
Xin Pan 已提交
113
        self.assertEqual(origin_len + 1, len(pass_builder.all_passes()))
114
        viz_pass.set("graph_viz_path", "/tmp/test_viz_pass")
115 116 117 118

        self.check_network_convergence(
            use_cuda=core.is_compiled_with_cuda(),
            build_strategy=build_strategy)
X
fix  
Xin Pan 已提交
119 120 121 122
        try:
            os.stat("/tmp/test_viz_pass")
        except os.error:
            self.assertFalse(True)
123 124 125 126


if __name__ == '__main__':
    unittest.main()