test_generate_proposal_labels.py 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://w_idxw.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import sys
import math
import paddle.fluid as fluid
from op_test import OpTest


def generate_proposal_labels_in_python(
        rpn_rois, gt_classes, gt_boxes, im_scales, batch_size_per_im,
        fg_fraction, fg_thresh, bg_thresh_hi, bg_thresh_lo, bbox_reg_weights,
        class_nums):
    rois = []
    labels_int32 = []
    bbox_targets = []
    bbox_inside_weights = []
    bbox_outside_weights = []
    lod = []
    assert len(rpn_rois) == len(
        im_scales), 'batch size of rpn_rois and ground_truth is not matched'

    for im_i in range(len(im_scales)):
        frcn_blobs = _sample_rois(
            rpn_rois[im_i], gt_classes[im_i], gt_boxes[im_i], im_scales[im_i],
            batch_size_per_im, fg_fraction, fg_thresh, bg_thresh_hi,
            bg_thresh_lo, bbox_reg_weights, class_nums)

        lod.append(frcn_blobs['rois'].shape[0])

        rois.append(frcn_blobs['rois'])
        labels_int32.append(frcn_blobs['labels_int32'])
        bbox_targets.append(frcn_blobs['bbox_targets'])
        bbox_inside_weights.append(frcn_blobs['bbox_inside_weights'])
        bbox_outside_weights.append(frcn_blobs['bbox_outside_weights'])

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights, lod


def _sample_rois(rpn_rois, gt_classes, gt_boxes, im_scale, batch_size_per_im,
                 fg_fraction, fg_thresh, bg_thresh_hi, bg_thresh_lo,
                 bbox_reg_weights, class_nums):
    rois_per_image = int(batch_size_per_im)
    fg_rois_per_im = int(np.round(fg_fraction * rois_per_image))

    # Roidb
    inv_im_scale = 1. / im_scale
    rpn_rois = rpn_rois * inv_im_scale

    boxes = np.vstack([gt_boxes, rpn_rois])
    gt_overlaps = np.zeros((boxes.shape[0], class_nums))
    box_to_gt_ind_map = np.zeros((boxes.shape[0]), dtype=np.int32)
    if len(gt_boxes) > 0:
        proposal_to_gt_overlaps = _bbox_overlaps(boxes, gt_boxes)

        overlaps_argmax = proposal_to_gt_overlaps.argmax(axis=1)
        overlaps_max = proposal_to_gt_overlaps.max(axis=1)
        # Boxes which with non-zero overlap with gt boxes
        overlapped_boxes_ind = np.where(overlaps_max > 0)[0]
        overlapped_boxes_gt_classes = gt_classes[overlaps_argmax[
            overlapped_boxes_ind]]
        gt_overlaps[overlapped_boxes_ind,
                    overlapped_boxes_gt_classes] = overlaps_max[
                        overlapped_boxes_ind]
        box_to_gt_ind_map[overlapped_boxes_ind] = overlaps_argmax[
            overlapped_boxes_ind]

    max_overlaps = gt_overlaps.max(axis=1)
    max_classes = gt_overlaps.argmax(axis=1)

    # Foreground
    fg_inds = np.where(max_overlaps >= fg_thresh)[0]
    fg_rois_per_this_image = np.minimum(fg_rois_per_im, fg_inds.shape[0])
    # Sample foreground if there are too many
    if fg_inds.shape[0] > fg_rois_per_this_image:
        fg_inds = np.random.choice(
            fg_inds, size=fg_rois_per_this_image, replace=False)

    # Background
    bg_inds = np.where((max_overlaps < bg_thresh_hi) & (max_overlaps >=
                                                        bg_thresh_lo))[0]
    bg_rois_per_this_image = rois_per_image - fg_rois_per_this_image
    bg_rois_per_this_image = np.minimum(bg_rois_per_this_image,
                                        bg_inds.shape[0])
    # Sample background if there are too many
    if bg_inds.shape[0] > bg_rois_per_this_image:
        bg_inds = np.random.choice(
            bg_inds, size=bg_rois_per_this_image, replace=False)

    keep_inds = np.append(fg_inds, bg_inds)
    sampled_labels = max_classes[keep_inds]
    sampled_labels[fg_rois_per_this_image:] = 0
    sampled_boxes = boxes[keep_inds]
    sampled_gts = gt_boxes[box_to_gt_ind_map[keep_inds]]
    sampled_gts[fg_rois_per_this_image:, :] = gt_boxes[0]

    bbox_label_targets = _compute_targets(sampled_boxes, sampled_gts,
                                          sampled_labels, bbox_reg_weights)
    bbox_targets, bbox_inside_weights = _expand_bbox_targets(bbox_label_targets,
                                                             class_nums)
    bbox_outside_weights = np.array(
        bbox_inside_weights > 0, dtype=bbox_inside_weights.dtype)

    # Scale rois
    sampled_rois = sampled_boxes * im_scale

    # Faster RCNN blobs
    frcn_blobs = dict(
        rois=sampled_rois,
        labels_int32=sampled_labels,
        bbox_targets=bbox_targets,
        bbox_inside_weights=bbox_inside_weights,
        bbox_outside_weights=bbox_outside_weights)
    return frcn_blobs


def _bbox_overlaps(roi_boxes, gt_boxes):
    w1 = np.maximum(roi_boxes[:, 2] - roi_boxes[:, 0] + 1, 0)
    h1 = np.maximum(roi_boxes[:, 3] - roi_boxes[:, 1] + 1, 0)
    w2 = np.maximum(gt_boxes[:, 2] - gt_boxes[:, 0] + 1, 0)
    h2 = np.maximum(gt_boxes[:, 3] - gt_boxes[:, 1] + 1, 0)
    area1 = w1 * h1
    area2 = w2 * h2

    overlaps = np.zeros((roi_boxes.shape[0], gt_boxes.shape[0]))
    for ind1 in range(roi_boxes.shape[0]):
        for ind2 in range(gt_boxes.shape[0]):
            inter_x1 = np.maximum(roi_boxes[ind1, 0], gt_boxes[ind2, 0])
            inter_y1 = np.maximum(roi_boxes[ind1, 1], gt_boxes[ind2, 1])
            inter_x2 = np.minimum(roi_boxes[ind1, 2], gt_boxes[ind2, 2])
            inter_y2 = np.minimum(roi_boxes[ind1, 3], gt_boxes[ind2, 3])
            inter_w = np.maximum(inter_x2 - inter_x1 + 1, 0)
            inter_h = np.maximum(inter_y2 - inter_y1 + 1, 0)
            inter_area = inter_w * inter_h
            iou = inter_area / (area1[ind1] + area2[ind2] - inter_area)
            overlaps[ind1, ind2] = iou
    return overlaps


def _compute_targets(roi_boxes, gt_boxes, labels, bbox_reg_weights):
    assert roi_boxes.shape[0] == gt_boxes.shape[0]
    assert roi_boxes.shape[1] == 4
    assert gt_boxes.shape[1] == 4

    targets = np.zeros(roi_boxes.shape)
    bbox_reg_weights = np.asarray(bbox_reg_weights)
    targets = _box_to_delta(
        ex_boxes=roi_boxes, gt_boxes=gt_boxes, weights=bbox_reg_weights)

    return np.hstack([labels[:, np.newaxis], targets]).astype(
        np.float32, copy=False)


def _box_to_delta(ex_boxes, gt_boxes, weights):
    ex_w = ex_boxes[:, 2] - ex_boxes[:, 0] + 1
    ex_h = ex_boxes[:, 3] - ex_boxes[:, 1] + 1
    ex_ctr_x = ex_boxes[:, 0] + 0.5 * ex_w
    ex_ctr_y = ex_boxes[:, 1] + 0.5 * ex_h

    gt_w = gt_boxes[:, 2] - gt_boxes[:, 0] + 1
    gt_h = gt_boxes[:, 3] - gt_boxes[:, 1] + 1
    gt_ctr_x = gt_boxes[:, 0] + 0.5 * gt_w
    gt_ctr_y = gt_boxes[:, 1] + 0.5 * gt_h

    dx = (gt_ctr_x - ex_ctr_x) / ex_w / weights[0]
    dy = (gt_ctr_y - ex_ctr_y) / ex_h / weights[1]
    dw = (np.log(gt_w / ex_w)) / ex_w / weights[2]
    dh = (np.log(gt_h / ex_h)) / ex_h / weights[3]

    targets = np.vstack([dx, dy, dw, dh]).transpose()
    return targets


def _expand_bbox_targets(bbox_targets_input, class_nums):
    class_labels = bbox_targets_input[:, 0]
    fg_inds = np.where(class_labels > 0)[0]

    bbox_targets = np.zeros((class_labels.shape[0], 4 * class_nums))
    bbox_inside_weights = np.zeros(bbox_targets.shape)
    for ind in fg_inds:
        class_label = int(class_labels[ind])
        start_ind = class_label * 4
        end_ind = class_label * 4 + 4
        bbox_targets[ind, start_ind:end_ind] = bbox_targets_input[ind, 1:]
        bbox_inside_weights[ind, start_ind:end_ind] = (1.0, 1.0, 1.0, 1.0)

    return bbox_targets, bbox_inside_weights


class TestGenerateProposalLabelsOp(OpTest):
    def set_data(self):
        self.init_test_params()
        self.init_test_input()
        self.init_test_output()
        self.inputs = {
            'RpnRois': (self.rpn_rois[0], self.rpn_rois_lod),
            'GtClasses': (self.gt_classes[0], self.gts_lod),
            'GtBoxes': (self.gt_boxes[0], self.gts_lod),
            'ImScales': self.im_scales[0]
        }
        self.attrs = {
            'batch_size_per_im': self.batch_size_per_im,
            'fg_fraction': self.fg_fraction,
            'fg_thresh': self.fg_thresh,
            'bg_thresh_hi': self.bg_thresh_hi,
            'bg_thresh_lo': self.bg_thresh_lo,
            'bbox_reg_weights': self.bbox_reg_weights,
            'class_nums': self.class_nums
        }
        self.outputs = {
            'Rois': (self.rois[0], [self.lod]),
            'LabelsInt32': (self.labels_int32[0], [self.lod]),
            'BboxTargets': (self.bbox_targets[0], [self.lod]),
            'BboxInsideWeights': (self.bbox_inside_weights[0], [self.lod]),
            'BboxOutsideWeights': (self.bbox_outside_weights[0], [self.lod]),
        }

    def test_check_output(self):
        self.check_output()

    def setUp(self):
        self.op_type = 'generate_proposal_labels'
        self.set_data()

    def init_test_params(self):
        self.batch_size_per_im = 10
        self.fg_fraction = 1.0
        self.fg_thresh = 0.5
        self.bg_thresh_hi = 0.5
        self.bg_thresh_lo = 0.0
        self.bbox_reg_weights = [0.1, 0.1, 0.2, 0.2]
        self.class_nums = 81

    def init_test_input(self):
        np.random.seed(0)
        image_nums = 1
        gt_nums = 6  # Keep same with batch_size_per_im for unittest
        proposal_nums = self.batch_size_per_im - gt_nums
        images_shape = []
        self.im_scales = []
        for i in range(image_nums):
            images_shape.append(np.random.randint(200, size=2))
            self.im_scales.append(np.ones((1)).astype(np.float32))

        self.rpn_rois, self.rpn_rois_lod = _generate_proposals(images_shape,
                                                               proposal_nums)
        ground_truth, self.gts_lod = _generate_groundtruth(
            images_shape, self.class_nums, gt_nums)
        self.gt_classes = [gt['gt_classes'] for gt in ground_truth]
        self.gt_boxes = [gt['boxes'] for gt in ground_truth]

    def init_test_output(self):
        self.rois, self.labels_int32, self.bbox_targets, \
        self.bbox_inside_weights, self.bbox_outside_weights, \
        self.lod = generate_proposal_labels_in_python(
                self.rpn_rois, self.gt_classes, self.gt_boxes, self.im_scales,
                self.batch_size_per_im, self.fg_fraction,
                self.fg_thresh, self.bg_thresh_hi, self.bg_thresh_lo,
                self.bbox_reg_weights, self.class_nums
            )


def _generate_proposals(images_shape, proposal_nums):
    rpn_rois = []
    rpn_rois_lod = []
    num_proposals = 0
    for i, image_shape in enumerate(images_shape):
        proposals = _generate_boxes(image_shape, proposal_nums)
        rpn_rois.append(proposals)
        num_proposals += len(proposals)
        rpn_rois_lod.append(num_proposals)
    return rpn_rois, [rpn_rois_lod]


def _generate_groundtruth(images_shape, class_nums, gt_nums):
    ground_truth = []
    gts_lod = []
    num_gts = 0
    for i, image_shape in enumerate(images_shape):
        # Avoid background
        gt_classes = np.random.randint(
            low=1, high=class_nums, size=gt_nums).astype(np.int32)
        gt_boxes = _generate_boxes(image_shape, gt_nums)
        ground_truth.append(dict(gt_classes=gt_classes, boxes=gt_boxes))
        num_gts += len(gt_classes)
        gts_lod.append(num_gts)
    return ground_truth, [gts_lod]


def _generate_boxes(image_size, box_nums):
    width = image_size[0]
    height = image_size[1]
    xywh = np.random.rand(box_nums, 4)
    xy1 = xywh[:, [0, 1]] * image_size
    wh = xywh[:, [2, 3]] * (image_size - xy1)
    xy2 = xy1 + wh
    boxes = np.hstack([xy1, xy2])
    boxes[:, [0, 2]] = np.minimum(width - 1., np.maximum(0., boxes[:, [0, 2]]))
    boxes[:, [1, 3]] = np.minimum(height - 1., np.maximum(0., boxes[:, [1, 3]]))
    return boxes.astype(np.float32)


if __name__ == '__main__':
    unittest.main()