backward.cc 7.0 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/framework/backward.h"
D
dongzhihong 已提交
16
#include <list>
17
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
18
#include "paddle/operators/net_op.h"
Y
Yu Yang 已提交
19 20 21 22

namespace paddle {
namespace framework {

Y
Yu Yang 已提交
23 24
template <typename Map, typename T>
static void ForEachVarName(Map& names, T callback) {
Y
Yu Yang 已提交
25
  for (auto& name : names) {
Y
Yu Yang 已提交
26 27
    for (auto& n : name.second) {
      if (callback(n)) break;
Y
Yu Yang 已提交
28 29
    }
  }
Y
Yu Yang 已提交
30 31 32 33 34 35 36 37 38 39 40
}

static bool AllInSet(
    const std::unordered_map<std::string, std::vector<std::string>>& names,
    const std::string& suffix, const std::unordered_set<std::string>& set) {
  bool ret_val = true;
  ForEachVarName(names, [&ret_val, &set, &suffix](const std::string& n) {
    ret_val = set.find(n + suffix) == set.end();
    return !ret_val;
  });
  return ret_val;
Y
Yu Yang 已提交
41 42
}

Y
Yu Yang 已提交
43
static std::shared_ptr<OperatorBase> NOP() {
Y
Yan Chunwei 已提交
44
  auto net_op = std::make_shared<operators::NetOp>();
Y
Yu Yang 已提交
45
  net_op->type_ = "@NOP@";
Y
Yu Yang 已提交
46 47 48 49
  net_op->CompleteAddOp();
  return net_op;
}

Y
Yu Yang 已提交
50 51 52 53
//  Get backward operator from a forward operator, recursively implementation.
//
//  no_grad_names the gradient variable names without gradient calculating.
//
54 55 56
//  uniq_id is a unique index used inside recursively calling
//  BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
//  pass `uniq_id` through recursive calling.
Y
Yu Yang 已提交
57 58 59 60 61 62 63 64 65
//
//  returns The backward operator. For simple situation, it is a simple
//  operator. For complex situation, it is a NetOp.
//
//  See Backward.h for details
static std::shared_ptr<OperatorBase> BackwardRecursive(
    const OperatorBase& forwardOp,
    std::unordered_set<std::string>& no_grad_names, size_t& uniq_id);
std::shared_ptr<OperatorBase> BackwardRecursive(
Y
Yu Yang 已提交
66 67
    const OperatorBase& forwardOp,
    std::unordered_set<std::string>& no_grad_names, size_t& uniq_id) {
Y
Yu Yang 已提交
68 69 70
  //  If all input gradients of forwarding operator do not need to calculate,
  //  just return an NOP. Not return null ptr because NOP does not take
  //  too much time for calculation, but it is useful for simplifying logic.
Y
Yi Wang 已提交
71
  if (AllInSet(forwardOp.inputs_, kGradVarSuffix, no_grad_names)) {
Y
Yu Yang 已提交
72
    return NOP();
Y
Yu Yang 已提交
73 74
  }

75 76
  //  All output gradients of forwarding operator do not need to calculate.
  //  Then all input gradients cannot be computed at all, and we put them into
Y
Yu Yang 已提交
77
  //  `no_grad_names` set. Return an NOP.
Y
Yi Wang 已提交
78
  if (AllInSet(forwardOp.outputs_, kGradVarSuffix, no_grad_names)) {
Y
Yu Yang 已提交
79 80 81 82 83
    ForEachVarName(forwardOp.inputs_,
                   [&no_grad_names](const std::string& name) -> bool {
                     no_grad_names.insert(GradVarName(name));
                     return false;
                   });
Y
Yu Yang 已提交
84
    return NOP();
Y
Yu Yang 已提交
85 86
  }

Y
Yu Yang 已提交
87
  // Returned gradient network
Y
Yan Chunwei 已提交
88
  auto net = std::make_shared<operators::NetOp>();
Y
Yu Yang 已提交
89 90

  if (forwardOp.IsNetOp()) {
Y
Yu Yang 已提交
91
    // Because forwardOp is a net op, it can static_cast.
Y
Yan Chunwei 已提交
92
    auto& forwardNet = static_cast<const operators::NetOp&>(forwardOp);
Y
Yu Yang 已提交
93

94 95
    // Map from output gradient variable name to operator's indices in
    // backward net. That operator generates that variable.
Y
Yu Yang 已提交
96 97 98
    std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;

    size_t local_op_id = 0;
Y
Yu Yang 已提交
99
    // reversely travel forwardNet
Y
Yu Yang 已提交
100
    for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend();
Y
Yu Yang 已提交
101
         ++it, ++local_op_id) {
D
dongzhihong 已提交
102
      auto fwd = *it;
Y
Yu Yang 已提交
103
      auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id);
D
dongzhihong 已提交
104
      net->AddOp(bwd);
Y
Yu Yang 已提交
105 106 107 108 109
      ForEachVarName(bwd->outputs_,
                     [&dup_output_ops, local_op_id](const std::string& out) {
                       dup_output_ops[out].emplace_back(local_op_id);
                       return false;
                     });
D
dongzhihong 已提交
110
    }
Y
Yu Yang 已提交
111
    // Get unique ID for this method.
D
dongzhihong 已提交
112
    auto uid = uniq_id++;
D
dongzhihong 已提交
113
    // TODO(dzh): more comment
Y
Yu Yang 已提交
114 115
    using Pos = std::pair<size_t, std::shared_ptr<OperatorBase>>;
    std::list<Pos> insert_position;
D
dongzhihong 已提交
116
    for (auto& dup_output_op : dup_output_ops) {
D
dongzhihong 已提交
117
      const std::string& name = dup_output_op.first;
D
dongzhihong 已提交
118 119 120 121 122 123
      auto& dup_op = dup_output_op.second;
      if (dup_op.size() == 1) continue;
      std::vector<std::string> dup_outputs;

      for (size_t i = 0; i < dup_op.size(); ++i) {
        auto op_offset = dup_op[i];
D
dongzhihong 已提交
124 125 126
        dup_outputs.push_back(name + "@RENAME@" + std::to_string(uid) + "@" +
                              std::to_string(i));
        net->ops_[op_offset]->Rename(name, dup_outputs.back());
D
dongzhihong 已提交
127
      }
Y
Yu Yang 已提交
128
      insert_position.push_back(
D
dongzhihong 已提交
129 130
          {dup_op.back(),
           OpRegistry::CreateOp(
Y
Yu Yang 已提交
131
               "add", {{"X", {dup_outputs}}}, {{"Out", {name}}},
D
dongzhihong 已提交
132
               {{"input_format",
Y
Yu Yang 已提交
133
                 std::vector<int>{0, static_cast<int>(dup_outputs.size())}}})});
D
dongzhihong 已提交
134
    }
Y
Yu Yang 已提交
135 136

    insert_position.sort(
D
dongzhihong 已提交
137
        [](const Pos& l, const Pos& r) { return l.first > r.first; });
Y
Yu Yang 已提交
138 139

    for (auto& pos : insert_position) {
Y
Yu Yang 已提交
140
      net->InsertOp(pos.first + 1, pos.second);
D
dongzhihong 已提交
141 142
    }

Y
Yu Yang 已提交
143
  } else {
144
    std::shared_ptr<OperatorBase> grad_op = OpRegistry::CreateGradOp(forwardOp);
Y
Yu Yang 已提交
145 146 147

    ForEachVarName(grad_op->inputs_, [&no_grad_names,
                                      &net](std::string& grad_input) {
148
      if (no_grad_names.count(grad_input)) {
Y
Yi Wang 已提交
149 150
        std::string prefix =
            grad_input.substr(0, grad_input.size() - kGradVarSuffix.size());
151
        grad_input = prefix + kZeroVarSuffix;
Y
Yu Yang 已提交
152 153 154

        // If part of input gradient of that operator is not calculated, fill
        // zero variables to that input gradient.
Y
Yu Yang 已提交
155 156
        net->AddOp(OpRegistry::CreateOp("fill_zeros_like", {{"Src", {prefix}}},
                                        {{"Dst", {grad_input}}}, {}));
157
      }
Y
Yu Yang 已提交
158 159 160 161 162 163 164 165 166 167
      return false;
    });

    ForEachVarName(grad_op->outputs_,
                   [&no_grad_names](std::string& grad_output) {
                     if (no_grad_names.count(grad_output)) {
                       grad_output = kEmptyVarName;
                     }
                     return false;
                   });
Y
Yu Yang 已提交
168 169 170 171

    if (net->ops_.empty()) {  // Current no aux op is added to network
      return grad_op;
    }
F
fengjiayi 已提交
172
    net->AddOp(grad_op);
Y
Yu Yang 已提交
173
  }
Y
Yu Yang 已提交
174
  net->type_ = "@GENERATED_BACKWARD@";
Y
Yu Yang 已提交
175
  net->CompleteAddOp();
Y
Yu Yang 已提交
176
  return net;
Y
Yu Yang 已提交
177 178
}

Y
Yu Yang 已提交
179 180
// See header for comments
std::shared_ptr<OperatorBase> Backward(
Y
Yu Yang 已提交
181
    const OperatorBase& forwardOp,
Y
Yu Yang 已提交
182 183 184 185
    const std::unordered_set<std::string>& no_grad_vars) {
  std::unordered_set<std::string> no_grad_names;
  no_grad_names.reserve(no_grad_vars.size());

Y
Yi Wang 已提交
186
  no_grad_names.insert(kEmptyVarName + kGradVarSuffix);
187

Y
Yu Yang 已提交
188
  for (auto& name : no_grad_vars) {
189
    no_grad_names.insert(name + kGradVarSuffix);
Y
Yu Yang 已提交
190
  }
Y
Yu Yang 已提交
191
  size_t uid = 0;
Y
Yu Yang 已提交
192
  return BackwardRecursive(forwardOp, no_grad_names, uid);
Y
Yu Yang 已提交
193
}
Y
Yi Wang 已提交
194

Y
Yu Yang 已提交
195 196
}  // namespace framework
}  // namespace paddle