pass_tester_helper.h 19.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#include <sstream>
#include <string>
20
#include <unordered_set>
21
#include <vector>
22
#include "paddle/fluid/framework/ir/graph.h"
23
#include "paddle/fluid/framework/op_proto_maker.h"
24 25
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
26 27 28 29 30 31 32 33 34

namespace paddle {
namespace framework {
namespace ir {

struct Layers {
 public:
  const ProgramDesc& main_program() { return program_; }

35 36 37 38
  VarDesc* data(std::string name, std::vector<int64_t> shape = {},
                bool is_persistable = false) {
    return lod_tensor(name, shape, is_persistable);
  }
39

40
  VarDesc* conv2d(VarDesc* input, VarDesc* filter, VarDesc* bias,
41
                  bool use_cudnn = false) {
42 43 44 45 46 47 48 49 50 51 52 53 54
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("conv2d");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("use_cudnn", use_cudnn);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

55 56 57 58 59 60 61 62 63 64 65 66 67
  VarDesc* conv2d_transpose(VarDesc* input, VarDesc* filter, VarDesc* bias) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("conv2d_transpose");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
  VarDesc* depthwise_conv2d(VarDesc* input, VarDesc* filter, VarDesc* bias,
                            bool use_cudnn) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("depthwise_conv2d");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("use_cudnn", use_cudnn);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

  VarDesc* pool2d(VarDesc* x, bool use_cudnn) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("pool2d");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("use_cudnn", use_cudnn);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

  VarDesc* relu(VarDesc* x, VarDesc* out = nullptr) {
    return unary_op("relu", x, out);
  }

99 100 101 102 103 104 105 106
  VarDesc* sigmoid(VarDesc* x, VarDesc* out = nullptr) {
    return unary_op("sigmoid", x, out);
  }

  VarDesc* tanh(VarDesc* x, VarDesc* out = nullptr) {
    return unary_op("tanh", x, out);
  }

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
  VarDesc* fc(VarDesc* input, VarDesc* w, VarDesc* bias,
              int in_num_col_dims = 1, std::string activation_type = "") {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("fc");
    op->SetInput("Input", {input->Name()});
    op->SetInput("W", {w->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("in_num_col_dims", in_num_col_dims);
    op->SetAttr("activation_type", activation_type);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  void lstm(VarDesc* input, VarDesc* w, VarDesc* bias, VarDesc* cell,
            VarDesc* batch_gate, VarDesc* hidden, VarDesc* batch_cell_pre_act,
            VarDesc* h0 = nullptr, VarDesc* c0 = nullptr,
            bool use_peepholes = true, bool is_reverse = false,
            std::string gate_activation = "sigmoid",
            std::string cell_activation = "tanh",
            std::string candidate_activation = "tanh") {
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("lstm");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Weight", {w->Name()});
    op->SetInput("Bias", {bias->Name()});
    if (h0) {
      op->SetInput("H0", {h0->Name()});
    }
    if (c0) {
      op->SetInput("C0", {c0->Name()});
    }
    op->SetOutput("Hidden", {hidden->Name()});
    op->SetOutput("Cell", {cell->Name()});
    op->SetOutput("BatchGate", {batch_gate->Name()});
    op->SetOutput("BatchCellPreAct", {batch_cell_pre_act->Name()});
    op->SetAttr("use_peepholes", use_peepholes);
    op->SetAttr("is_reverse", is_reverse);
    op->SetAttr("gate_activation", gate_activation);
    op->SetAttr("cell_activation", cell_activation);
    op->SetAttr("candidate_activation", candidate_activation);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
  }

  void gru(VarDesc* input, VarDesc* w, VarDesc* bias, VarDesc* batch_gate,
           VarDesc* batch_reset_hidden_prev, VarDesc* batch_hidden,
           VarDesc* hidden, VarDesc* h0 = nullptr, bool origin_mode = false,
           bool is_reverse = false, std::string activation = "tanh",
           std::string gate_activation = "sigmoid") {
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("gru");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Weight", {w->Name()});
    op->SetInput("Bias", {bias->Name()});
    if (h0) {
      op->SetInput("H0", {h0->Name()});
    }
    op->SetOutput("BatchGate", {batch_gate->Name()});
    op->SetOutput("BatchResetHiddenPrev", {batch_reset_hidden_prev->Name()});
    op->SetOutput("BatchHidden", {batch_hidden->Name()});
    op->SetOutput("Hidden", {hidden->Name()});
    op->SetAttr("origin_mode", origin_mode);
    op->SetAttr("is_reverse", is_reverse);
    op->SetAttr("activation", activation);
    op->SetAttr("gate_activation", gate_activation);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
  }

179 180 181 182 183
  VarDesc* mul(VarDesc* x, VarDesc* y, VarDesc* out = nullptr,
               int x_num_col_dims = 1) {
    AttributeMap attrs;
    attrs["x_num_col_dims"] = 1;
    return binary_op("mul", x, y, out, &attrs);
184 185 186 187 188 189
  }

  VarDesc* elementwise_add(VarDesc* x, VarDesc* y, VarDesc* out = nullptr) {
    return binary_op("elementwise_add", x, y, out);
  }

190 191 192 193
  VarDesc* elementwise_mul(VarDesc* x, VarDesc* y, VarDesc* out = nullptr) {
    return binary_op("elementwise_mul", x, y, out);
  }

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
  VarDesc* dropout(VarDesc* x, float dropout_prob,
                   std::string dropout_implementation) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("dropout");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("is_test", true);
    op->SetAttr("dropout_prob", dropout_prob);
    op->SetAttr("dropout_implementation", dropout_implementation);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
  VarDesc* concat(std::vector<VarDesc*> inputs, int axis = -1) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("concat");
    std::vector<std::string> input_names(inputs.size());
    for (size_t i = 0; i < inputs.size(); ++i) {
      input_names[i] = inputs[i]->Name();
    }
    op->SetInput("X", input_names);
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("axis", axis);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  std::vector<VarDesc*> layer_norm(VarDesc* x, VarDesc* scale = nullptr,
                                   VarDesc* bias = nullptr) {
    VarDesc* y = lod_tensor(unique_name());
    VarDesc* mean = lod_tensor(unique_name());
    VarDesc* variance = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("layer_norm");
    op->SetInput("X", {x->Name()});
    if (scale) {
      op->SetInput("Scale", {scale->Name()});
    }
    if (bias) {
      op->SetInput("Bias", {bias->Name()});
    }
    op->SetOutput("Y", {y->Name()});
    op->SetOutput("Mean", {mean->Name()});
    op->SetOutput("Variance", {variance->Name()});
    op->SetAttr("epsilon", static_cast<float>(1E-05));
    op->SetAttr("begin_norm_axis", static_cast<int>(1));
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    std::vector<VarDesc*> outs = {y, mean, variance};
    return outs;
  }

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
  VarDesc* matmul(VarDesc* x, VarDesc* y, VarDesc* alpha = nullptr) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("matmul");
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* transpose2(VarDesc* x, std::vector<int> axis) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("transpose2");
    op->SetInput("X", {x->Name()});
    op->SetAttr("axis", axis);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* reshape2(VarDesc* x, std::vector<int> shape) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("reshape2");
    op->SetInput("X", {x->Name()});
    op->SetAttr("shape", shape);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* softmax(VarDesc* x, int axis) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("softmax");
    op->SetInput("X", {x->Name()});
    op->SetAttr("axis", axis);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* scale(VarDesc* x, float scale, float bias, bool bias_after) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("scale");
    op->SetInput("X", {x->Name()});
    op->SetAttr("scale", scale);
    op->SetAttr("bias", bias);
    op->SetAttr("bias_after_scale", bias_after);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  std::vector<VarDesc*> batch_norm(VarDesc* x, VarDesc* scale, VarDesc* bias,
                                   VarDesc* mean, VarDesc* variance) {
    VarDesc* y = lod_tensor(unique_name());
    VarDesc* mean_out = lod_tensor(unique_name());
    VarDesc* variance_out = lod_tensor(unique_name());
    VarDesc* saved_mean = lod_tensor(unique_name());
    VarDesc* saved_variance = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("batch_norm");
    op->SetInput("X", {x->Name()});
    op->SetInput("Scale", {scale->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetInput("Mean", {mean->Name()});
    op->SetInput("Variance", {variance->Name()});
    op->SetOutput("Y", {y->Name()});
    op->SetOutput("MeanOut", {mean_out->Name()});
    op->SetOutput("VarianceOut", {variance_out->Name()});
    op->SetOutput("SavedMean", {saved_mean->Name()});
    op->SetOutput("SavedVariance", {saved_variance->Name()});
    op->SetAttr("epsilon", static_cast<float>(1e-5));
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    std::vector<VarDesc*> outs = {y, mean_out, variance_out, saved_mean,
                                  saved_variance};
    return outs;
  }

329 330 331
  void backward(std::vector<VarDesc*> targets) {
    // This function is designed to simulate the structure of training program,
    //  but is constructed differently as the actual program.
332 333
    BlockDesc* block = program_.MutableBlock(0);
    std::vector<OpDesc*> forward_ops = block->AllOps();
334 335 336 337 338 339 340 341
    for (auto* var : targets) {
      OpDesc* none_op = block->AppendOp();
      none_op->SetType("none");
      none_op->SetInput("X", {var->Name()});
      VarDesc* grad_var =
          lod_tensor(GradVarName(var->Name()), var->GetShape(), false);
      none_op->SetOutput("Out", {grad_var->Name()});
    }
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    for (int i = forward_ops.size() - 1; i >= 0; --i) {
      OpDesc* op = forward_ops[i];
      OpDesc* grad_op = block->AppendOp();
      grad_op->SetType(op->Type() + "_grad");
      // All op's inputs are grad_op's input.
      for (auto name : op->InputNames()) {
        grad_op->SetInput(name, op->Input(name));
      }
      // All op's outputs are grad_op's input.
      for (auto name : op->OutputNames()) {
        grad_op->SetInput(name, op->Output(name));
      }
      // All op's outputs grad are grad_op's input.
      for (auto name : op->OutputNames()) {
        std::vector<std::string> grad_var_names;
        for (auto var_name : op->Output(name)) {
          VarDesc* var = block->FindVar(var_name);
          VarDesc* grad_var =
              lod_tensor(GradVarName(var_name), var->GetShape(), false);
          grad_var_names.push_back(grad_var->Name());
        }
        grad_op->SetInput(GradVarName(name), grad_var_names);
      }
      // All op's inputs grad are grad_op's output.
      for (auto name : op->InputNames()) {
        std::vector<std::string> grad_var_names;
        for (auto var_name : op->Input(name)) {
          VarDesc* var = block->FindVar(var_name);
          VarDesc* grad_var =
              lod_tensor(GradVarName(var_name), var->GetShape(), false);
          grad_var_names.push_back(grad_var->Name());
        }
        grad_op->SetOutput(GradVarName(name), grad_var_names);
      }
      // TODO(liuyiqun): attrs
    }
  }

380
 private:
381 382
  VarDesc* lod_tensor(std::string name, std::vector<int64_t> shape = {},
                      bool is_persistable = false) {
383 384
    auto* var = program_.MutableBlock(0)->Var(name);
    var->SetType(proto::VarType::LOD_TENSOR);
385 386
    var->SetShape(shape);
    var->SetPersistable(is_persistable);
387 388 389
    return var;
  }

390 391 392 393 394 395 396 397 398 399 400 401 402
  VarDesc* unary_op(std::string type, VarDesc* x, VarDesc* out = nullptr) {
    if (!out) {
      out = lod_tensor(unique_name());
    }
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType(type);
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

403
  VarDesc* binary_op(std::string type, VarDesc* x, VarDesc* y,
404 405
                     VarDesc* out = nullptr,
                     const AttributeMap* attrs = nullptr) {
406 407 408 409 410 411 412 413
    if (!out) {
      out = lod_tensor(unique_name());
    }
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType(type);
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetOutput("Out", {out->Name()});
414 415 416 417 418
    if (attrs) {
      for (auto& iter : *attrs) {
        op->SetAttr(iter.first, iter.second);
      }
    }
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

  std::string unique_name() { return "tmp_" + std::to_string(idx_++); }

 private:
  ProgramDesc program_;
  int idx_{0};
};

static std::string DebugString(OpDesc* op) {
  std::ostringstream os;
  os << "Op(" << op->Type() << "), inputs:{";
  bool is_first = true;
  for (auto& name : op->InputNames()) {
    if (!is_first) {
      os << ", ";
    }
    os << name << "[";
    bool is_first_var_name = true;
    for (auto& var_name : op->Input(name)) {
      if (!is_first_var_name) {
        os << ", ";
      }
      os << var_name;
      is_first_var_name = false;
    }
    os << "]";
    is_first = false;
  }

  os << "}, outputs:{";
  is_first = true;
  for (auto& name : op->OutputNames()) {
    if (!is_first) {
      os << ", ";
    }
    os << name << "[";
    bool is_first_var_name = true;
    for (auto& var_name : op->Output(name)) {
      if (!is_first_var_name) {
        os << ", ";
      }
      os << var_name;
      is_first_var_name = false;
    }
    os << "]";
    is_first = false;
  }
  os << "}";
  return os.str();
}

static std::string DebugString(Node* node) {
  std::ostringstream os;
  if (node->IsOp() && node->Op()) {
    OpDesc* op = node->Op();
    os << "Node(" << DebugString(op) << "), inputs:{";
    bool is_first = true;
    for (auto* in : node->inputs) {
      if (!is_first) {
        os << ", ";
      }
      os << in->Name();
      is_first = false;
    }
    os << "}, outputs:{";
    is_first = true;
    for (auto* out : node->outputs) {
      if (!is_first) {
        os << ", ";
      }
      os << out->Name();
      is_first = false;
    }
    os << "}.";
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  } else {
    os << "Node(" << node->Name();
    if (node->IsVar() && node->Var()) {
      os << "{";
      bool is_first = true;
      for (auto dim : node->Var()->GetShape()) {
        if (!is_first) {
          os << "x";
        }
        os << dim;
        is_first = false;
      }
      os << "}";
    }
    os << "), inputs:{";
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    bool is_first = true;
    for (auto* in : node->inputs) {
      if (!is_first) {
        os << ", ";
      }
      if (in->IsOp() && in->Op()) {
        os << in->Op()->Type();
      }
      is_first = false;
    }
    os << "}, outputs:{";
    is_first = true;
    for (auto* out : node->outputs) {
      if (!is_first) {
        os << ", ";
      }
      if (out->IsOp() && out->Op()) {
        os << out->Op()->Type();
      }
      is_first = false;
    }
    os << "}";
  }
  return os.str();
}

538
static std::string DebugString(const std::vector<Node*>& nodes) {
539
  std::ostringstream os;
540
  for (auto* node : nodes) {
541 542 543 544 545 546 547
    if (node->IsOp() && node->Op()) {
      os << "  ";
    } else if (node->IsVar() && node->Var()) {
      os << "    ";
    }
    os << DebugString(node) << "\n";
  }
548 549 550
  return os.str();
}

551 552 553 554 555 556 557 558
static std::string DebugString(const std::unordered_set<Node*>& nodes) {
  std::vector<Node*> vec;
  for (auto* node : nodes) {
    vec.push_back(node);
  }
  return DebugString(vec);
}

559
static std::string DebugString(Graph* graph) {
560 561
  std::ostringstream os;
  os << "Graph: {\n" << DebugString(graph->Nodes()) << "}\n";
562 563 564
  return os.str();
}

565 566 567 568
static std::string DebugString(const std::unique_ptr<Graph>& graph) {
  return DebugString(graph.get());
}

569 570 571 572 573 574 575 576 577 578 579 580 581 582
static int GetNumOpNodes(const std::unique_ptr<Graph>& graph,
                         std::string op_type) {
  int num_nodes = 0;
  for (auto* node : graph->Nodes()) {
    if (node->IsOp() && node->Op() && node->Op()->Type() == op_type) {
      num_nodes++;
    }
  }
  return num_nodes;
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle