sgd_compute.cc 2.7 KB
Newer Older
L
liuwei1031 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/operators/jit/kernels.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

template <typename T>
class SGDCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
 public:
  using param_t = operators::ActivationParam;

  void Run() override {
S
update  
superjomn 已提交
32
    auto &context = ctx_->As<X86Context>();
L
liuwei1031 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    auto &sgd_param = *param_.get_mutable<operators::SGDParam>();
    CHECK(context.x86_device_context);

    // param.Out->template mutable_data<T>();

    const auto *param = &sgd_param.Param->raw_tensor();
    const auto *grad = &sgd_param.Grad->raw_tensor();
    const auto *learning_rate = &sgd_param.LearningRate->raw_tensor();
    auto *param_out = &sgd_param.ParamOut->raw_tensor();

    auto sz = param_out->numel();
    PADDLE_ENFORCE_EQ(param->numel(), sz);
    PADDLE_ENFORCE_EQ(grad->numel(), sz);

    paddle::operators::jit::sgd_attr_t attr(1, sz, 1, sz, 1);
    const T *lr = learning_rate->data<T>();
    const T *param_data = param->data<T>();
    const T *grad_data = grad->data<T>();
    int64_t rows_idx = 0;
    T *out_data =
        param_out->mutable_data<T>(context.x86_device_context->GetPlace());

    auto sgd =
        paddle::operators::jit::KernelFuncs<paddle::operators::jit::SgdTuple<T>,
                                            platform::CPUPlace>::Cache()
            .At(attr);
    sgd(lr, param_data, grad_data, &rows_idx, out_data, &attr);
  }

  virtual ~SGDCompute() = default;
};

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

// float
REGISTER_LITE_KERNEL(sgd, kX86, kFloat, kNCHW,
                     paddle::lite::kernels::x86::SGDCompute<float>, def)
    .BindInput("Param", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindInput("LearningRate", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindInput("Grad", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindOutput("ParamOut", {LiteType::GetTensorTy(TARGET(kX86))})
    .Finalize();